Search results for: person recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3024

Search results for: person recognition

2514 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 160
2513 Living Arrangement of Elderly in India: An Exploration from BKPAI Study

Authors: Jitendra Gouda, Chander Shekhar

Abstract:

With the addition of 27 million elderly in India in past census decade from 2001 to 2011, it is imperative to work towards exploring the issues and concerns of this increasingly aged population. In Indian society, the elderly person is assumed to be looked after by the family members, especially by children but with changing economy, society, and lifestyle, this assumption demands examining. This paper is an attempt to explore the living arrangement of the elderly and their perceptions about this in India. The findings are based on the BKPAI dataset of 2011, which was conducted in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal. The result shows that three fourth of elderly lives with their children. Having son and staying with children is positively associated among elderly. More than 40 percent as compared to 37 percent of elderly feels comfortable living with sons and daughters respectively. Half of elderly across sexes viewed that sons are the best person to live with. The result of discriminant analysis suggest that health status and living arrangement of elderly are the good discriminators to ensure their importance in the family.

Keywords: discriminant analysis, elderly, India, living arrangment

Procedia PDF Downloads 326
2512 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
2511 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 355
2510 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 218
2509 Small Target Recognition Based on Trajectory Information

Authors: Saad Alkentar, Abdulkareem Assalem

Abstract:

Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).

Keywords: small targets, drones, trajectory information, TBD, multivariate time series

Procedia PDF Downloads 48
2508 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 70
2507 Development of Scratching Monitoring System Based on Mathematical Model of Unconstrained Bed Sensing Method

Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system, and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: First experiment is the subject’s scratching the right side cheek with his right hand, and; second experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.

Keywords: unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics

Procedia PDF Downloads 411
2506 Time Pressure and Its Effect at Tactical Level of Disaster Management

Authors: Agoston Restas

Abstract:

Introduction: In case of managing disasters decision makers can face many times such a special situation where any pre-sign of the drastically change is missing therefore the improvised decision making can be required. The complexity, ambiguity, uncertainty or the volatility of the situation can require many times the improvisation as decision making. It can be taken at any level of the management (strategic, operational and tactical) but at tactical level the main reason of the improvisation is surely time pressure. It is certainly the biggest problem during the management. Methods: The author used different tools and methods to achieve his goals; one of them was the study of the relevant literature, the other one was his own experience as a firefighting manager. Other results come from two surveys that are referred to; one of them was an essay analysis, the second one was a word association test, specially created for the research. Results and discussion: This article proves that, in certain situations, the multi-criteria, evaluating decision-making processes simply cannot be used or only in a limited manner. However, it can be seen that managers, directors or commanders are many times in situations that simply cannot be ignored when making decisions which should be made in a short time. The functional background of decisions made in a short time, their mechanism, which is different from the conventional, was studied lately and this special decision procedure was given the name recognition-primed decision. In the article, author illustrates the limits of the possibilities of analytical decision-making, presents the general operating mechanism of recognition-primed decision-making, elaborates on its special model relevant to managers at tactical level, as well as explore and systemize the factors that facilitate (catalyze) the processes with an example with fire managers.

Keywords: decision making, disaster managers, recognition primed decision, model for making decisions in emergencies

Procedia PDF Downloads 260
2505 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 144
2504 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 455
2503 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 692
2502 The Effect of 15 Minutes of Hugging a Stuffed Toy on the Level of Cortisol Hormones of Stressed Government Employees in Davao City

Authors: Karen Detoya

Abstract:

Decreasing cortisol usually leads to good psychological health. This is done in various ways, such as by hugging. Although hugging may decrease a person’s cortisol, it is not advisable during pandemics. Besides that, non-contact cultures and histories of molestation may elicit negative feelings in a person when hugged; thus, hugging a stuffed toy is an option. This research explored the effect of 15 minutes of hugging a stuffed toy among stressed government employees. There are two groups in the study and 15 participants per group. Cortisol was measured before and after the intervention. The first group hugged a stuffed toy for 15 minutes, while the second group stayed in the room without hugging anything. For data analysis, t-tests for dependent samples and t-tests for independent samples were utilized. Results showed no significant differences in the cortisol levels of the two groups before and after the experiment. It also showed no significant difference between the cortisol levels of the two groups after the experiment. Comparing the experimental group by age (18-41 years old and 42-65 years old) and gender (male and female), results showed no significant difference in their cortisol hormones after the intervention.

Keywords: hugging, cortisol, stuffed toy, stressed government employees

Procedia PDF Downloads 243
2501 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
2500 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study

Authors: Insiya Bhalloo

Abstract:

It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.

Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition

Procedia PDF Downloads 358
2499 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 174
2498 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 388
2497 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 154
2496 Development of a Social Assistive Robot for Elderly Care

Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He

Abstract:

This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.

Keywords: social robot, vision, elderly care, machine learning

Procedia PDF Downloads 441
2495 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 379
2494 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 449
2493 Remedying the Scourge of Poverty as a Social Problem: The Islamic Perspective

Authors: Maryam Umar Ladan, Arshad Munir

Abstract:

Poverty has always been a constant feature of society throughout history. It has existed in the lives of people and it is a fact that although the majority of people lives in poverty, the remaining minority lives in luxury. While some countries called the first World countries lives in luxury, the third World countries lives in poverty. It remains an undesirable phenomenon affecting a vast number of people across the globe despite governmental, institutional and private organizations’ interventions with measures aimed at cushioning its adverse effects. Unequal distribution of societal resources, accumulated wealth in the hands of few, lack of access to education and employment, individual responsibility among others, were highlighted as factors associated with poverty. Poverty predisposes the poor individual to malnutrition and starvation, exposure to disease, thereby resulting to violence, crimes, and experiencing lifelong problems. Evidence show that about 50 percent of the world population lives on less than 2.50 dollar a day, 90 percent of whom are from Sub-Saharan Africa and South Asia including countries where Islam is the major if not one adherent religion. As a solution to poverty, Islam prescribes a system of annual Zakat (charity). The Islamic law prescribes that every person who has a saving that reaches a certain limit should give out 2.5 percent of the total annual earning (as in income, money, farm produce) to deserving and prescribed citizens. This is to, among others; reduce the level of inequality through distribution of wealth among the Muslim Ummah (community). Furthermore, Islam encourages the rich in several places in the Qur’an to spend their wealth on poor people other than the compulsory 2.5%. Therefore, it is inarguable that the Islamic system of distribution of resources (as zakat) is the best strategy to poverty eradication. Thus, strongly recommended for desired results in poverty eradication efforts. If every rich person gives Zakat sincerely, poverty will be eradicated in the world, and not a single person will die of want of food or material things.

Keywords: Islam, charity, poverty, zakat

Procedia PDF Downloads 287
2492 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators

Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol

Abstract:

Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.

Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence

Procedia PDF Downloads 201
2491 Rice Blessing Ceremony of Thailand and Vietnam: The Relation of Southeast Asia

Authors: Patthida Bunchavalit, Saharot Kittimahacharoen

Abstract:

The objective of this article is to compare rice blessing ceremony between Thailand and Vietnam. Both countries are located in Southeast Asia where agriculture is the main occupation. As a result of the study, it is found that the rice blessing ceremony of Thai and Vietnamese societies have differences and similarities. A person leading the ceremony is a person who has the highest position in the country. For Thailand, it is the king or royal family member while for Vietnam, it is the president. In Thailand, the ceremony began in Ayutthaya period which derived from Buddhism and Brahmanism ideology. It is annually organized in the beginning of raining season. In Vietnam, it is annually organized in the beginning of spring. The first time it occurred was in Tien Le Monarchy period of Thien Phuc era deriving from Chinese ideology. The differences are ideas, believes, objectives and details of the ceremony. It is, in Thailand, to boost farmer’s morale and to predict the fertility of crops in each year. Additionally, there is a prediction using royal cows. Meanwhile, in Vietnam the purpose is to worship god of weather for seasonal rain and productive harvesting. Therefore, it is presumed that the rice blessing ceremony of Thailand and Vietnam somewhat have similarities in spite of having different origin but are on the same basis of belief.

Keywords: agriculture, ceremony, culture, Thailand, Vietnam

Procedia PDF Downloads 185
2490 Human Rights to Environment: The Constitutional and Judicial Perspective in India

Authors: Varinder Singh

Abstract:

The primitive man had not known anything like human rights. In the later centuries of human progress with the development of scientific and technological knowledge, the growth of population and the tremendous changes in the human environment, the laws of nature that maintained the Eco-balance crumbled. The race for better and comfortable life landed mankind in a vicious circle. It created environmental imbalance, unplanned and uneven development, breakdown of self-sustaining village economy, mushrooming of shanty towns and slums, widening the chasm between the rich and the poor, over-exploitation of natural resources, desertification of arable lands, pollution of different kinds, heating up of earth and depletion of ozone layer. Modem International Life has been deeply marked and transformed by current endeavors to meet the needs and fulfill the requirements of protection of human person and of the environment. Such endeavors have been encouraged by the widespread recognition that protection of human being and the environment reflects common superior values and constitutes a common concern of mankind. The parallel evolutions of human rights protection and environmental protection disclose some close affinities. There was the occurrence of process of internationalization of both human rights protection and environmental protection, the former beginning with the 1948 Universal Declaration of Human Rights, the latter with the 1972 Stockholm Declaration on the Human Environment.It is now well established that it is the basic human right of every individual to live in a pollution free environment with full human dignity. The judiciary has so far pronounced a number of judgments in this regard. The Supreme Court in view of various laws relating to environment protection and the constitutional provision has held that right to pollution free environment. Article-21 is the heart of the fundamental rights and has received expanded meanings from time to time.

Keywords: human rights, law, environment, polluter

Procedia PDF Downloads 223
2489 Identification of Novel Differentially Expressed and Co-Expressed Genes between Tumor and Adjacent Tissue in Prostate Cancer

Authors: Luis Enrique Bautista-Hinojosa, Luis A. Herrera, Cristian Arriaga-Canon

Abstract:

Text should be written in the third person. Please avoid using "I" “my” or the pronoun "one". It is best to say "It is believed..." rather than "I believe..." or "One believes...".

Keywords: transcriptomics, co-expression, cancer, biomarkers

Procedia PDF Downloads 75
2488 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process

Authors: Pathinathan Theresanathan, Ajay Minj

Abstract:

Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.

Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR

Procedia PDF Downloads 260
2487 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach

Procedia PDF Downloads 278
2486 Financial Reporting Quality and International Financial Reporting

Authors: Matthias Nnadi

Abstract:

Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.

Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong

Procedia PDF Downloads 465
2485 Awareness of Turkish Cypriots on Domestic Violence: Exploratory Study of Cultural Influence on Public Health

Authors: Nazif Fuat Turkmen

Abstract:

Domestic violence is the most common form of violence that risks the health and psychological well-being of victims and its witnesses. Psychology as a scientific field has made contributions in research, exploration, assessment, intervention, and prevention of domestic violence. The present study will be exploring the level of recognition of Turkish Cypriots on domestic violence and their understanding about it in general terms. While discussing the level of awareness of Turkish Cypriots on domestic violence and the effects of this level of awareness on the general well-being of the members of the society, the most common types of domestic violence as well as how Turkish Cypriots recognize and interpret these different types will be explored. The participants consisted of 224 Turkish Cypriots; 48.4% (n= 109) were female, 51.1% (n=115) were male. For the purpose of the study, a 28-item questionnaire was prepared and used for data collection. According to the results, there is a strong relationship between the education level of the respondents and their awareness on domestic violence. The study shows that cultural approaches on child rearing effect people’s recognition of violence in general and awareness on domestic violence in particular.

Keywords: culture, domestic violence, health psychology, public health, Turkish Cypriots, violence

Procedia PDF Downloads 452