Search results for: multi-objective fractional programming
663 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver
Authors: Shreeyam, Ranjan Kumar Sah, Shivangi
Abstract:
Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks
Procedia PDF Downloads 122662 Producing Graphical User Interface from Activity Diagrams
Authors: Ebitisam K. Elberkawi, Mohamed M. Elammari
Abstract:
Graphical User Interface (GUI) is essential to programming, as is any other characteristic or feature, due to the fact that GUI components provide the fundamental interaction between the user and the program. Thus, we must give more interest to GUI during building and development of systems. Also, we must give a greater attention to the user who is the basic corner in the dealing with the GUI. This paper introduces an approach for designing GUI from one of the models of business workflows which describe the workflow behavior of a system, specifically through activity diagrams (AD).Keywords: activity diagram, graphical user interface, GUI components, program
Procedia PDF Downloads 464661 Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands
Authors: Mohammad Alibakhshikenari, Ernesto Limiti, Bal S. Virdee
Abstract:
The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX.Keywords: miniature antenna, composite right/left-handed transmission line (CRLH-TL), wideband antenna, communication transceiver, metamaterials
Procedia PDF Downloads 218660 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 460659 A Sustainable Supplier Selection and Order Allocation Based on Manufacturing Processes and Product Tolerances: A Multi-Criteria Decision Making and Multi-Objective Optimization Approach
Authors: Ravi Patel, Krishna K. Krishnan
Abstract:
In global supply chains, appropriate and sustainable suppliers play a vital role in supply chain development and feasibility. In a larger organization with huge number of suppliers, it is necessary to divide suppliers based on their past history of quality and delivery of each product category. Since performance of any organization widely depends on their suppliers, well evaluated selection criteria and decision-making models lead to improved supplier assessment and development. In this paper, SCOR® performance evaluation approach and ISO standards are used to determine selection criteria for better utilization of supplier assessment by using hybrid model of Analytic Hierchchy Problem (AHP) and Fuzzy Techniques for Order Preference by Similarity to Ideal Solution (FTOPSIS). AHP is used to determine the global weightage of criteria which helps TOPSIS to get supplier score by using triangular fuzzy set theory. Both qualitative and quantitative criteria are taken into consideration for the proposed model. In addition, a multi-product and multi-time period model is selected for order allocation. The optimization model integrates multi-objective integer linear programming (MOILP) for order allocation and a hybrid approach for supplier selection. The proposed MOILP model optimizes order allocation based on manufacturing process and product tolerances as per manufacturer’s requirement for quality product. The integrated model and solution approach are tested to find optimized solutions for different scenario. The detailed analysis shows the superiority of proposed model over other solutions which considered individual decision making models.Keywords: AHP, fuzzy set theory, multi-criteria decision making, multi-objective integer linear programming, TOPSIS
Procedia PDF Downloads 170658 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem
Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly
Abstract:
We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard
Procedia PDF Downloads 525657 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 281656 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod
Abstract:
In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX
Procedia PDF Downloads 606655 Europe's War on Refugees: The Increased Need for International Protection and Promotion of Migrant Rights
Authors: Rai Friedman
Abstract:
The recent migrant crisis has revealed an unmet demand for increased international protection and promotion of migrant rights. Europe has found itself at the centre of the migration crisis, being the recipient to the largest number of asylum-seekers since the conclusion of the second World War. Rather than impart a unified humanitarian lens of offering legal protections, the Schengen territory is devising new, preventative measures to confront the influx of asylum-seekers. This paper will focus on the refugee crisis in Europe as it relates to the Central Mediterranean route. To do so, it will outline the increased need for international protection for migrant rights through analyzing historic human rights treaties and conventions; the formation of the current composition of the Schengen area; the evolutionary changes in policies and legal landscapes throughout Europe and the Central Mediterranean route; the vernacular transformation surrounding refugees, migrants, and asylum-seekers; and expose the gaps in international protection. It will also discuss Europe’s critical position, both geographically and conceptually, critiquing the notion of European victimization. Lastly, it will discuss the increased harm of preventative border measures and argue for tangible sustainability solutions through economic programming models in highly vulnerable countries. To do so, this paper will observe a case study in Algeria that has conceded to an economic programming model for forced migrants. In 2017 amid worker shortages, Algeria announced it would grant African migrants’ legal status to become agriculturalists and construction workers. Algeria is one of the few countries along the Central Mediterranean route that has adopted a law to govern foreign nationals’ conditions of entry, stay and circulation. Thereafter, it will provide recommendations for solutions for forced migration along the Central Mediterranean route and advocate for strengthened protections under international law.Keywords: refugees, migrants, human rights, middle east, Africa, mediterranean, international humanitarian law, policy
Procedia PDF Downloads 110654 B4A Is One of the Best Programming Software for Surveyor Engineers
Authors: Ali Mohammadi
Abstract:
Many engineers use the programs that are installed on the computer, but with the arrival of the mobile phone and the possibility of designing apps, many Android programs can be designed similar to the programs that are installed on the computer, and from the mobile phone, in addition to communication Telephone and photography show a more practical use. Engineers are one of the groups that can use specialized apps to have less need to go to the office and computer, and b4a can be considered one of the simplest software for designing apps. This article introduces a number of surveying apps designed using b4a and the impact that using these apps has on productivity in this field of engineering.Keywords: app, tunnel, total station, map
Procedia PDF Downloads 48653 Schedule a New Production Plan by Heuristic Methods
Authors: Hanife Merve Öztürk, Sıdıka Dalgan
Abstract:
In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling
Procedia PDF Downloads 401652 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop
Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen
Abstract:
Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.
Procedia PDF Downloads 41651 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 296650 Hypergraph for System of Systems modeling
Authors: Haffaf Hafid
Abstract:
Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork
Procedia PDF Downloads 488649 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis
Authors: Iannick Gagnon, Alain April
Abstract:
The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis
Procedia PDF Downloads 153648 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants
Authors: Yang Zhou, Kaijian Li, Guiwen Liu
Abstract:
Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants
Procedia PDF Downloads 274647 Influence of Particulate Fractions on Air Quality for Four Major Congested Cities of India over a Period of Four Years from 2006-2009
Authors: I. Mukherjee, J. Ghose, T. Chakraborty, S. Chaudhury, R. Majumder
Abstract:
India is the second most populated nation in the world. With the Indian population hitting the 1.26 billion mark in the year 2014, there has been an unprecedented rise in power and energy requirements throughout the nation. This mammoth demand for energy, both at the industrial as well as at the domestic household level, as well as the increase in the usage of automobiles has led to a corresponding increase in the total tonnage of fuels being burnt every year. This, in turn, has led to an increase in the concentration of atmospheric pollutants over the years with enhanced particulate concentrations being reported for different parts of the country. Considering the adverseness of the particulates, the paper analyses the role of the particulates on the air quality of four major congested cities of the country namely, Kolkata (22034’ N, 88024’ E), Delhi (28038’N , 77012’ E), Bangalore (12058’ N , 77038’E) and Mumbai (18.9750° N, 72.8258° E) over a period of four years from 2006-2009. The fractional contribution of the finer fractions to the coarser one has been considered in the study in addition to the relative occurrences of the particulate fractions with respect to the other gaseous pollutants such as sulphur dioxide (SO2) and nitrogen oxides (NOX).Keywords: air quality, particulates, yearly variation, relative occurrence, SO2, NOX
Procedia PDF Downloads 368646 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 208645 Hypercomplex Dynamics and Turbulent Flows in Sobolev and Besov Functional Spaces
Authors: Romulo Damasclin Chaves dos Santos, Jorge Henrique de Oliveira Sales
Abstract:
This paper presents a rigorous study of advanced functional spaces, with a focus on Sobolev and Besov spaces, to investigate key aspects of fluid dynamics, including the regularity of solutions to the Navier-Stokes equations, hypercomplex bifurcations, and turbulence. We offer a comprehensive analysis of Sobolev embedding theorems in fractional spaces and apply bifurcation theory within quaternionic dynamical systems to better understand the complex behaviors in fluid systems. Additionally, the research delves into energy dissipation mechanisms in turbulent flows through the framework of Besov spaces. Key mathematical tools, such as interpolation theory, Littlewood-Paley decomposition, and energy cascade models, are integrated to develop a robust theoretical approach to these problems. By addressing challenges related to the existence and smoothness of solutions, this work contributes to the ongoing exploration of the open Navier-Stokes problem, providing new insights into the intricate relationship between fluid dynamics and functional spaces.Keywords: navier-stokes equations, hypercomplex bifurcations, turbulence, sobolev and besov space
Procedia PDF Downloads 14644 Physical Physics: Enhancing the Learning Experience for Undergraduate Game Development Students
Authors: Y. Kavanagh, N. O'Hara, R. Palmer, P. Lowe, D. Rafferty
Abstract:
Physical Physics is a physics education methodology for games programfmes that integrates physical activity with movement tracking and modelling. It significantly enhances the learning experience and it is effective in illustrating how physics is core in games design and programming, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying Games Development.Keywords: activity, enhanced learning, game development, physics
Procedia PDF Downloads 289643 Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach
Authors: Chandrashekar, R. T. Radhika, B. M. Venkatesha, S. Ananda, Shivalingegowda, T. S. Shashikumar, H. Ramachandra
Abstract:
The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.Keywords: amitriptyline, bromamine-T, kinetics, oxidation
Procedia PDF Downloads 340642 Optimal Management of Internal Capital of Company
Authors: S. Sadallah
Abstract:
In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 285641 The Presence of Carnism on Portuguese Television
Authors: Rui Pedro Fonseca
Abstract:
This paper presents the results of a research about carnism on Portuguese television. It begins by presenting a case study of MasterChef program (TVI) which conveys carnism in both practices and language, and from which some characteristics of their dominant representations are described. Subsequently, the paper presents the indicators of the presence of carnism in the Portuguese television programming, between 2013 and 2014, in the TVI, RTP1, and SICS channels. The data reveals that there is the hegemony of the carnist ideology in the main channels of the Portuguese television. Also, the samples collected and viewed show no mention of the impacts of carnism in its various dimensions (non-human animals, environment, human health and sustainability).Keywords: carnism, speciesism, television, Portugal
Procedia PDF Downloads 363640 From Modeling of Data Structures towards Automatic Programs Generating
Authors: Valentin P. Velikov
Abstract:
Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling
Procedia PDF Downloads 305639 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth
Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad
Abstract:
In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.Keywords: dual-mode resonators, perturbation theory, reconfigurable filters, software defined radio, cognitine radio
Procedia PDF Downloads 167638 Fructooligosaccharide Prebiotics: Optimization of Different Cultivation Parameters on Their Microbial Production
Authors: Elsayed Ahmed Elsayed, Azza Noor El-Deen, Mohamed A. Farid, Mohamed A. Wadaan
Abstract:
Recently, a great attention has been paid to the use of dietary carbohydrates as prebiotic functional foods. Among the new commercially available products, fructooligosaccharides (FOS), which are microbial produced from sucrose, have attracted special interest due to their valuable properties and, thus, have a great economic potential for the sugar industrial branch. They are non-cariogenic sweeteners of low caloric value, as they are not hydrolyzed by the gastro-intestinal enzymes, promoting selectively the growth of the bifidobacteria in the colon, helping to eliminate the harmful microbial species to human and animal health and preventing colon cancer. FOS has been also found to reduce cholesterol, phospholipids and triglyceride levels in blood. FOS has been mainly produced by microbial fructosyltransferase (FTase) enzymes. The present work outlines bioprocess optimization for different cultivation parameters affecting the production of FTase by Penicillium aurantiogriseum AUMC 5605. The optimization involves both traditional as well as fractional factorial design approaches. Additionally, the production process will be compared under batch and fed-batch conditions. Finally, the optimized process conditions will be applied to 5-L stirred tank bioreactor cultivations.Keywords: prebiotics, fructooligosaccharides, optimization, cultivation
Procedia PDF Downloads 387637 Consideration of Uncertainty in Engineering
Authors: A. Mohammadi, M. Moghimi, S. Mohammadi
Abstract:
Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method
Procedia PDF Downloads 414636 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-commerce, hardware acceleration, logistics, machine learning, mixed integer programming, optimization
Procedia PDF Downloads 251635 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry
Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc
Abstract:
Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning
Procedia PDF Downloads 518634 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors
Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr
Abstract:
Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.Keywords: diffusion tensor imaging, MRI, salivary gland, tumors
Procedia PDF Downloads 111