Search results for: heterogeneous massive data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25982

Search results for: heterogeneous massive data

25472 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 538
25471 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 63
25470 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda

Abstract:

Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 227
25469 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years

Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang

Abstract:

The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.

Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau

Procedia PDF Downloads 231
25468 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 173
25467 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 311
25466 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study

Authors: K. Debkowska

Abstract:

The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.

Keywords: business models, components of business models, data analysis, fsQCA

Procedia PDF Downloads 171
25465 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach

Authors: Kanika Gupta, Ashok Kumar

Abstract:

Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.

Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database

Procedia PDF Downloads 170
25464 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS

Authors: Gagandeep Singh

Abstract:

The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.

Keywords: WSNs, ECRSEP, SEP, field optimization, energy

Procedia PDF Downloads 300
25463 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 418
25462 The Friction of Oil Contaminated Granular Soils; Experimental Study

Authors: Miron A., Tadmor R., Pinkert S.

Abstract:

Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.

Keywords: contaminated soils, lubrication, friction, granular media

Procedia PDF Downloads 55
25461 Open Innovation in SMEs: A Multiple Case Study of Collaboration between Start-ups and Craft Enterprises

Authors: Carl-Philipp Valentin Beichert, Marcel Seger

Abstract:

Digital transformation and climate change require small and medium-sized enterprises (SME) to rethink their way of doing business. Inter-firm collaboration is recognized as helpful means of promoting innovation and competitiveness. In this context, collaborations with start-ups offer valuable opportunities through their innovative products, services, and business models. SMEs, and in particular German craft enterprises, play an important role in the country’s society and economy. Companies in this heterogeneous economic sector have unique characteristics and are limited in their ability to innovate due to their small size and lack of resources. Collaborating with start-ups could help to overcome these shortcomings. To investigate how collaborations emerge and what factors are decisive to successfully drive collaboration, we apply an explorative, qualitative research design. A sample of ten case studies was selected, with the collaboration between a start-up and a craft enterprise forming the unit of analysis. Semi-structured interviews with 20 company representatives allow for a two-sided perspective on the respective collaboration. The interview data is enriched by publicly available data and three expert interviews. As a result, objectives, initiation practices, applied collaboration types, barriers, as well as key success factors could be identified. The results indicate a three-phase collaboration process comprising an initiation, concept, and partner phase (ICP). The ICP framework proposed accordingly highlights the success factors (personal fit, communication, expertise, structure, network) for craft enterprises and start-ups for each collaboration phase. The role of a mediator in the start-up company, with strong expertise in the respective craft sector, is considered an important lever for overcoming barriers such as cultural and communication differences. The ICP framework thus provides promising directions for further research and can help practitioners establish successful collaborations.

Keywords: open innovation, SME, craft businesses, startup collaboration, qualitative research

Procedia PDF Downloads 93
25460 Challenges to Change and Innovation in Educational System

Authors: Felicia Kikelomo Oluwalola

Abstract:

The study was designed to identify the challenges to change and innovation in educational system in Nigeria. Educational institutions, like all other organizations, require constant monitoring, to identify areas for potential improvement. However, educational reforms are often not well-implemented. This results in massive wastage of finances, human resources, and lost potential. Educational institutions are organised on many levels, from the individual classroom under the management of a single teacher, to groups of classrooms supervised by a Head Teacher or Executive Teacher, to a whole-school structure, under the guidance of the principal. Therefore, there is need for changes and innovation in our educational system since we are in the era of computer age. In doing so, this paper examined the psychology of change, concept of change and innovation with suggested view points. Educational administrators and individuals should be ready to have the challenge of monitoring changes in technologies. Educational planners/policy makers should be encouraged to involve in change process.

Keywords: challenges, change, education, innovation

Procedia PDF Downloads 612
25459 Humanising Hospital Retrofitting: The Case Study of Malaysia Public Hospitals

Authors: Nur Faridatull Syafinaz Ahmad Tajudin

Abstract:

A hospital is a setting where individuals who are ill or injured are treated and cared for by doctors and nurses. Sanatoriums are settings where people can receive treatment and rest, particularly when recovering from a protracted illness. According to the report, hospitals are primarily designed to meet the needs of medical personnel by maximising their functionality and workflow. Hospitals frequently do a poor job of determining the patients' physical and emotional requirements and expectations. The literature on hospital design has recently focused more on the seeming need to "humanise" medical facilities. Despite the popularity of this design objective, "humanising" a space has hardly ever been defined or critically examined. The term "humanistic design" covered a broad range of design elements and designer interpretations. In reality, the hospital's layout and design the hospital may have a massive effect on patients' feel experience things and heal.

Keywords: hospital retrofitting, hospital design, humanising hospital, spatial design

Procedia PDF Downloads 120
25458 Role of Gender in Apparel Stores' Consumer Review: A Sentiment Analysis

Authors: Sarif Ullah Patwary, Matthew Heinrich, Brandon Payne

Abstract:

The ubiquity of web 2.0 platforms, in the form of wikis, social media (e.g., Facebook, Twitter, etc.) and online review portals (e.g., Yelp), helps shape today’s apparel consumers’ purchasing decision. Online reviews play important role towards consumers’ apparel purchase decision. Each of the consumer reviews carries a sentiment (positive, negative or neutral) towards products. Commercially, apparel brands and retailers analyze sentiment of this massive amount of consumer review data to update their inventory and bring new products in the market. The purpose of this study is to analyze consumer reviews of selected apparel stores with a view to understand, 1) the difference of sentiment expressed through men’s and woman’s text reviews, 2) the difference of sentiment expressed through men’s and woman’s star-based reviews, and 3) the difference of sentiment between star-based reviews and text-based reviews. A total of 9,363 reviews (1,713 men and 7,650 women) were collected using Yelp Dataset Challenge. Sentiment analysis of collected reviews was carried out in two dimensions: star-based reviews and text-based reviews. Sentiment towards apparel stores expressed through star-based reviews was deemed: 1) positive for 3 or 4 stars 2) negative for 1 or 2 stars and 3) neutral for 3 stars. Sentiment analysis of text-based reviews was carried out using Bing Liu dictionary. The analysis was conducted in IPyhton 5.0. Space. The sentiment analysis results revealed the percentage of positive text reviews by men (80%) and women (80%) were identical. Women reviewers (12%) provided more neutral (e.g., 3 out of 5 stars) star reviews than men (6%). Star-based reviews were more negative than the text-based reviews. In other words, while 80% men and women wrote positive reviews for the stores, less than 70% ended up giving 4 or 5 stars in those reviews. One of the key takeaways of the study is that star reviews provide slightly negative sentiment of the consumer reviews. Therefore, in order to understand sentiment towards apparel products, one might need to combine both star and text aspects of consumer reviews. This study used a specific dataset consisting of selected apparel stores from particular geographical locations (the information was not given for privacy concern). Future studies need to include more data from more stores and locations to generalize the findings of the study.

Keywords: apparel, consumer review, sentiment analysis, gender

Procedia PDF Downloads 164
25457 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 134
25456 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 433
25455 Framework to Organize Community-Led Project-Based Learning at a Massive Scale of 900 Indian Villages

Authors: Ayesha Selwyn, Annapoorni Chandrashekar, Kumar Ashwarya, Nishant Baghel

Abstract:

Project-based learning (PBL) activities are typically implemented in technology-enabled schools by highly trained teachers. In rural India, students have limited access to technology and quality education. Implementing typical PBL activities is challenging. This study details how Pratham Education Foundation’s Hybrid Learning model was used to implement two PBL activities related to music in 900 remote Indian villages with 46,000 students aged 10-14. The activities were completed by 69% of groups that submitted a total of 15,000 videos (completed projects). Pratham’s H-Learning model reaches 100,000 students aged 3-14 in 900 Indian villages. The community-driven model engages students in 20,000 self-organized groups outside of school. The students are guided by 6,000 youth volunteers and 100 facilitators. The students partake in learning activities across subjects with the support of community stakeholders and offline digital content on shared Android tablets. A training and implementation toolkit for PBL activities is designed by subject experts. This toolkit is essential in ensuring efficient implementation of activities as facilitators aren’t highly skilled and have limited access to training resources. The toolkit details the activity at three levels of student engagement - enrollment, participation, and completion. The subject experts train project leaders and facilitators who train youth volunteers. Volunteers need to be trained on how to execute the activity and guide students. The training is focused on building the volunteers’ capacity to enable students to solve problems, rather than developing the volunteers’ subject-related knowledge. This structure ensures that continuous intervention of subject matter experts isn’t required, and the onus of judging creativity skills is put on community members. 46,000 students in the H-Learning program were engaged in two PBL activities related to Music from April-June 2019. For one activity, students had to conduct a “musical survey” in their village by designing a survey and shooting and editing a video. This activity aimed to develop students’ information retrieval, data gathering, teamwork, communication, project management, and creativity skills. It also aimed to identify talent and document local folk music. The second activity, “Pratham Idol”, was a singing competition. Students participated in performing, producing, and editing videos. This activity aimed to develop students’ teamwork and creative skills and give students a creative outlet. Students showcased their completed projects at village fairs wherein a panel of community members evaluated the videos. The shortlisted videos from all villages were further evaluated by experts who identified students and adults to participate in advanced music workshops. The H-Learning framework enables students in low resource settings to engage in PBL and develop relevant skills by leveraging community support and using video creation as a tool. In rural India, students do not have access to high-quality education or infrastructure. Therefore designing activities that can be implemented by community members after limited training is essential. The subject experts have minimal intervention once the activity is initiated, which significantly reduces the cost of implementation and allows the activity to be implemented at a massive scale.

Keywords: community supported learning, project-based learning, self-organized learning, education technology

Procedia PDF Downloads 186
25454 An Examination of the Impact of Sand Dunes on Soils, Vegetation and Water Resources as the Major Means of Livelihood in Gada Local Government Area of Sokoto State, Nigeria

Authors: Abubakar Aminu

Abstract:

Sand dunes, as a major product of desertification, is well known to affect soil resources, water resources and vegetation, especially in arid and semi-arid region; this scenario disrupt the livelihood security of people in the affected areas. The research assessed the episode of sand dune accumulation on water resources, soil and vegetation in Gada local government of Sokoto State, Nigeria. In this paper, both qualitative and quantitative methods were used to generate data which was analyzed and discussed. The finding of the paper shows that livelihood was affected by accumulations of sand dunes as water resources and soils were affected negatively thereby reducing crop yields and making livestock domestication a very difficult and expensive task; the finding also shows that 60% of the respondents agreed to planting of trees as the major solution to combat sand dunes accumulation. However, the soil parameters tested indicated low Organic carbon, low Nitrogen, low Potassium, Calcium and Phosphorus but higher values were recorded in Sodium and Cation exchange capacity which served as evidence of the high or strong aridity nature of the soil in the area. In line with the above, the researcher recommended a massive tree planting campaign to curtail desertification as well as using organic manures for higher agricultural yield and as such, improvement in livelihood security.

Keywords: soils, vegetatio, water, desertification

Procedia PDF Downloads 72
25453 Understanding the Popularity of Historical Conservation in China: The Depoliticized Narratives as a Counter-Insurgency Strategy in Guangzhou

Authors: Luxi Chen

Abstract:

The land finance in China in recent years has propelled urban renewals in the name of historical conservation and led to massive gentrification and compulsory relocation. Such inequalities cause insurgence. Drawing on public planning information, ethnographic field notes, and online interview data about Guangzhou's Enninglu Area, this paper aims to present how such insurgence has been contained and put down gradually through depoliticization narratives represented by "improving living conditions," "conserving historical culture," and "public participation”. This paper's findings include that 1) Besides economic growth, maintaining social stability in alignment with the central government are equally important to local government, reveals the latter efforts to mediate the growth coalition, residents, media, and academics so as to reconstruct the interface between state and society; 2) To empower the insurgence, the media and academics use public interests for propaganda, that diverts attention away from its political dimension; 3) In response, the government introduces improved regulations and planning, turning social inequalities into technical inadequacy so as to become the defender of public interests, which justifies the incoming renewal and prevents public questioning. By comparing regime changes among governments, developers, residents, media, and academics caused by renewal policies, this paper presents the depoliticized narrative as a counter-insurgence strategy to contain social conflicts and to boost inner-city renewal.

Keywords: inner city renewal, depoliticization, historical conservation, public participation

Procedia PDF Downloads 235
25452 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 58
25451 Urban Sustainability and Move to Low Carbon Development

Authors: I. P. Singh, Ajesh Kumar Kapoor

Abstract:

Rapid globalization have led to a change towards massive uncontrolled urbanization. Whereas during initial years negligence was there in the name of development, growth and vision toward healthier and better tomorrow. Considering the scenario of developing nations (India) where 70% of their population is living on 30% (urban areas) of their total land available. The need of an hour is to consider the ethical values of each and every person living in urban fringes, whereby the sustainable urban development is promoted which encompasses the move toward low carbon developments. It would help reviving a city lung space and reducing carbon credits as per Kyoto Protocol 1991. This paper would provide an overview about Indian scenario of current urban areas, ongoing developments, series of regulatory policy measures, materials innovative use and policies framed and opted for low carbon development.

Keywords: urban sustainability, indicators for sustainable development, low carbon development, Indian Policies toward low carbon development

Procedia PDF Downloads 414
25450 A Cost Effective Approach to Develop Mid-Size Enterprise Software Adopted the Waterfall Model

Authors: Mohammad Nehal Hasnine, Md Kamrul Hasan Chayon, Md Mobasswer Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: end-user application development, enterprise software design, information resource management, usability

Procedia PDF Downloads 438
25449 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: Moschos Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: classification, land use/land cover, mapping, random forest

Procedia PDF Downloads 126
25448 K-Pop Fandom: A Sub-Cultural Influencer on K-Pop Brand Attitude

Authors: Patricia P. M. C. Lourenco, Sang Yong Kim, Anaisa D. A. De Sena

Abstract:

K-Pop fandom is a paradoxical dichotomy of two conceptual contexts: the Korean single fandom and the international fandom; both strongly influence K-Pop brand attitude. Collectivist, South Korea’s fans showcase their undivided support to one artist comeback towards earning a triple-crown in domestic music charts. In contrast, individualist international fans collectively ship a plethora of artists and collaborate amongst themselves to the continuous expansion of K-Pop into a mainstream cultural glocalization in international music charts. The distinct idiosyncrasies between the two groups creates a heterogeneous K-Pop brand attitude that is challenging to tackle marketing wise for lack of homogeneity in the sub-cultural K-Pop fandom.

Keywords: K-Pop fandom, single-fandom, multi-fandom, individualism, collectivism, brand attitude, sub-culture

Procedia PDF Downloads 286
25447 Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy

Authors: Shan-e-Fatima, Mushtaq Khan, Syed Imran Hussian

Abstract:

Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample.

Keywords: fusion zone microstructure, stainless steel, low carbon steel, plasma arc welding

Procedia PDF Downloads 576
25446 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, step method, delay differential equation, two delays

Procedia PDF Downloads 205
25445 Undifferentiated Embryonal Sarcoma of Liver: A Rare Case Report

Authors: Thieu-Thi Tra My

Abstract:

Undifferentiated embryonal sarcoma of the liver (UESL), a rare malignant mesenchymal tumor, is commonly seen in children. The symptoms and imaging were not specific, so it could be mimicked with other tumors or liver abscesses. The tumor often appears as a large heterogeneous echoic solid mass with small cystic areas while showing a cyst-like appearance on CT and MRI. The histopathological manifestation of the UESL consisted of stellate-shaped and spindle cells scattered on a myxoid background with high mitotic count. Cells with multiple or bizarre nuclear were also observed. Here, we aimed to describe a 9-year-old male diagnosed with UESL focused on imaging and histopathological characteristics.

Keywords: undifferentiated embryonal sarcoma of liver, UESL, liver sarcoma, liver tumor, children

Procedia PDF Downloads 74
25444 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
25443 Ethic Society of Tengger Tribe in Indonesia as a Nation Strength to Make Good Character to Advance Country

Authors: Dwi Yulian Fahruddin Shah, Salman Al Farizi, Elyada Ahastari Liunome

Abstract:

Indonesia is a multicultural society. A wide variety of arts and culture spread throughout in all of part of Indonesia with natural appearance will cause the social behavior differentiation. Similarly, with Tengger people's lives also have different social behaviors that distinguish them from other ethnic groups spread across the Indonesian archipelago. Tengger tribe has an appropriate ethic to build nation character. If all the people of Indonesia who heterogeneous and multicultural can understand, and follow the example of ethical behavior of Tengger tribe, it will be a force in the development of the character of the nation in this modern and globalization era.

Keywords: Tengger tribe, national character, ethics society, Indonesia

Procedia PDF Downloads 403