Search results for: feed forward network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6839

Search results for: feed forward network

6329 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 312
6328 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 155
6327 Enhancing Entrepreneurial Skills, Vocational, and Technical Education in Nigeria Schools: The Challenges and Way Forward

Authors: Stella Chioma Nwizu, Emmanuel Nwangwu

Abstract:

Entrepreneurship, Vocational, and Technical education is an education that prepares one for effective adaptation to the world of work. It equally makes individuals self-reliant, self-sufficient and contributes to the development of society. It is, therefore, imperative that this type of education should be a priority in the development of any nation and should be given the utmost political support because of its importance and increasing demand on a global scale. This paper qualitatively explores three research questions on the policy status of Entrepreneurial, Vocational, and Technical Education (EVTE) in Nigeria, challenges hindering the enhancement of Entrepreneurial skills, Vocational and Technical Education in Nigeria, and strategies for the way forward. The major sources of data are secondary, interview and observation. Findings revealed the need to revise the policy of ETVE to meet the needs of the changing world of work. Challenges identified include corruption, inadequate funding, inadequate equipment, unqualified TVET Teachers/Instructors, poor documentation, policy implementation, poor conditions of service, and poor supervision of TVET programmes. Finally, the study identified policy revision, improvement in budgetary allocation, collaboration, sensitization, Public-Private Partnership, and training and retraining of instructors as the way forward toward the amelioration of the issues raised.

Keywords: entrepreneurship, entrepreneurial skills, vocational and technical education, technical and vocational education and training, VTE policy

Procedia PDF Downloads 73
6326 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 137
6325 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 399
6324 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia

Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad

Abstract:

A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.

Keywords: ACTIFLO ® clarifier, mining wastewater, reverse osmosis, water treatment

Procedia PDF Downloads 194
6323 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application

Authors: Zouhour Neji Ben Salem

Abstract:

Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.

Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation

Procedia PDF Downloads 406
6322 Garlic (Allium sativum) Extract Enhancing Protein Digestive Enzymes and Growth Performance in Marble Goby (Oxyleotris marmorata) Juvenile

Authors: Jaturong Matidtor, Krisna R. Torrissen, Saengtong Pongjareankit, Sudaporn Tongsiri, Jiraporn Rojtinnakorn

Abstract:

Low survival rate has being particular problem in nursery of marble goby juvenile. The aim of this study was to investigate effect of garlic extract on protein digestive pancreatic enzymes, trypsin (T) and chymotrypsin (C). The marble goby were reared with commercial feed mixed garlic extract at concentration of 0 (control), 0.3, 0.5, 1.0, 3.0 and 5.0% (w/w) for 6 weeks. Analysis of the digestive enzymes at 2 and 6 weeks was performed. Growth parameters; weight gain (WG), specific growth rate (SGR) and feed efficiency (FE), were identified. For T, C and T/C at 2 weeks, values of T and T/C ratio of 0.3% (w/w) group showed significant difference (p < 0.05) with the highest values of 17685.64± 11981.77 U/mg protein and of 51.64 ± 27.46 U/mg protein, respectively. For C at 2 weeks, 0% (w/w) group showed the highest values of 16191.76± 2225.56 U/mg protein. Whereas value of T, C and T/C ratio at 6 weeks, there was no significant difference (p > 0.05). For growth performance, it significantly increased in all garlic extract fed groups (0.3-5.0%, w/w), both at 2 and 6 weeks. At 2 weeks, values of WG and SGR of 0.5% (w/w) group showed the highest values of 71.51 ± 1.60%, and 3.85 ± 0.07%, respectively. For FE, 0.3% (w/w) group showed the highest value of 60.21 ± 6.51%. At 6 weeks, it illustrated that all growth parameters of 5.0% (w/w) group were the highest values; WG = 35.06 ± 5.66%, SGR = 2.14 ± 0.30%, and FE = 5.86 ± 0.68%. We suggested that garlic extract could be available for protein digestive enzyme and growth enhancement in marble goby nursery with artificial feed. This result will be high benefit for commercial aquaculture of marble goby.

Keywords: marble goby, nursery, garlic extract, digestive enzyme, growth

Procedia PDF Downloads 326
6321 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 59
6320 The Effects of Arginine, Glutamine and Threonine Supplementation in the Starting Phase on Subsequent Performance of Male Broile

Authors: Jalal Fazli Amiri, Mohammad Hossein Shahir, Mohammad Hossein Nemati, Afshin Heidarinia

Abstract:

The current study was performed to investigate the effects of arginine, threonine, and glutamine supplementation in excess of requirements in the starter period (17 days) on performance, intestinal morphology, and immune response of broilers. Four hundred and sixteen male day-old chicks were assigned in a 2×2×2 factorial arrangement to a completely randomized design with four replicates (13 birds per replicate ). Treatments were: a control group that received the basal diet, basal diet plus 1% glutamine, basal diet plus 0.2% threonine, basal diet plus 0.75 % arginine, and combination of these three amino acids (glutamine+arginine, glutamine+threonine, arginine+threonine and arginine+ glutamine+threonine). The effect of glutamine supplementation on feed intake was significant in week 4 (p < 0.05), week 6 (p < 0.001), and total feed intake (p < 0.05) and caused declined feed intake. No significant differences of glutamine addition were observed on intestinal morphology (villi height, crypt depth, villi height to crypt depth ratio, villi width). Threonine supplementation caused increased weight gain in week 2 (p < 0.001) and 3 and a decrease of total feed intake (p < 0.05). Duodenum and jejunum villi height, crypt depth, villi height to crypt depth ratio, villi width were not affected. The effect of arginine supplementation was the increase of breast percentage (p < 0.05) and a decrease of jejunum villi high (p < 0.05) and Jejunum crypt depth (p < 0.05). Supplementation of arginine, threonine, and glutamine had no significant effects on blood titer of antibodies against Newcastle disease, infectious bronchitis, avian influenza. Overall, it seems that the supplementation of arginine, threonine, and glutamine in excess of requirements in the starter period had no effect on performance in subsequent periods and intestinal morphology.

Keywords: intestinal morphology, immunity, broiler chickens, glutamine, arginine, threonine

Procedia PDF Downloads 137
6319 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 218
6318 Olefin and Paraffin Separation Using Simulations on Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.

Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent

Procedia PDF Downloads 449
6317 Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food

Authors: Shuang Qiu, Lingfeng Wang, Zhipeng Chen, Shijian Ge

Abstract:

Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed.

Keywords: animal feed, flies, macroalgae, nutrient recovery, Ulva lactuca, wastewater

Procedia PDF Downloads 127
6316 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 67
6315 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.

Keywords: microgrids, secondary control, multiagent, sampling, LMI

Procedia PDF Downloads 333
6314 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 413
6313 Comparing Community Detection Algorithms in Bipartite Networks

Authors: Ehsan Khademi, Mahdi Jalili

Abstract:

Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.

Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks

Procedia PDF Downloads 627
6312 A Blockchain-Based Protection Strategy against Social Network Phishing

Authors: Francesco Buccafurri, Celeste Romolo

Abstract:

Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.

Keywords: phishing, social networks, information sharing, blockchain

Procedia PDF Downloads 330
6311 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 398
6310 Effect of Feeding Camel Rumen Content on Growth Performance and Haematological Parameters of Broiler Chickens under Semi-Arid Condition

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Adamu, Aminu Maidala

Abstract:

One hundred and fifty (150) day old chicks were randomly allocated into five dietary treatments birds and each treatment where replicated twice in groups of fifteen birds in each replicate. Camel rumen content (CRC) was included in the diets of broiler at 0, 5, 10, 15, and 20% to replace maize and groundnut cake to evaluate the effect on the performance and hematological parameters at the starter and finisher phase. A completely randomized design was used and 600g of feed was given daily and water was given ad libitum. At the starter phase, the daily weight gain and feed conversion ratio were significantly affected by the test ingredients, although T1(0% CRC) which serve as a control, were similar with T2(5% CRC), T3(10% CRC), and T4(15% CRC), while the lowest value was recorded in T5(20% CRC). The result indicates that up to 15% (CRC) level can be included in the starter diet to replace maize and groundnut cake without any effect on the performance. However, at the finisher phase, the daily feed intake, daily weight gain and feed conversion ratio show no significant (F>0.05) difference among the dietary treatments. Similarly, Packed cell volume (PCV), Red Blood Cell (RBC), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), and Mean Corpuscular Haemoglobin (MCH) also did not differ significantly (F>0.05) among the dietary treatments while hemoglobin (Hb) and Mean Corpuscular Haemoglobin Concentration (MCHC) differs significantly. The differential counts of eosinophils, heterophils, and lymphocytes differ significantly among the treatment groups, while that of basophils and monocytes shows no significant difference among the treatment groups. This means up to 20% CRC inclusion level can be used to replaced maize and groundnut cake in the finisher diet without any adverse effect on the performance and hematological parameters of the chickens.

Keywords: camel, rumen content, growth, hematology

Procedia PDF Downloads 217
6309 Predictive Modeling of Flank Wear in Hard Turning Using the Taguchi Method

Authors: Suha K. Shihab, Zahid A. Khan, Aas Mohammad, Arshad Noor Siddiquee

Abstract:

This paper presents the influence of cutting parameters (cutting speed, feed and depth of cut) on flank wear (VB) in turning of 52100 hard alloy steel using multilayer coated carbide insert under dry condition. Nine experiments were performed based on Taguchi’s L9 orthogonal array. Analysis of variance (ANOVA) was used to determine the effects of the cutting parameters on flank wear. The results of the study revealed that the cutting speed (A) and feed rate (B) are the dominant factors affecting flank wear, while the depth of cut (C) has not a significant effect. The optimal combination of the cutting parameters for flank wear is found to be A1B1C1. The mathematical model for flank wear is found to be statistically significant. The predicted and measured values of flank wear are found to be very close to each other.

Keywords: flank wear, hard turning, Taguchi approach, optimization

Procedia PDF Downloads 665
6308 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution

Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai

Abstract:

Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.

Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning

Procedia PDF Downloads 374
6307 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 395
6306 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 337
6305 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb

Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan

Abstract:

This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.

Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee

Procedia PDF Downloads 391
6304 A Practice of Zero Trust Architecture in Financial Transactions

Authors: Liwen Wang, Yuting Chen, Tong Wu, Shaolei Hu

Abstract:

In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces the SDP technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access, and significantly improves the security protection capability of Internet transactions. The study achieves 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.

Keywords: zero trust, trading terminal, architecture, network security, cybersecurity

Procedia PDF Downloads 170
6303 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 341
6302 Immunostimulatory Response of Supplement Feed in Fish against Aeromonas hydrophila

Authors: Shikha Rani, Neeta Sehgal, Vipin Kumar Verma, Om Prakash

Abstract:

Introduction: Fish is an important protein source for humans and has great economic value. Fish cultures are affected due to various anthropogenic activities that lead to bacterial and viral infections. Aeromonas hydrophila is a fish pathogenic bacterium that causes several aquaculture outbreaks throughout the world and leads to huge mortalities. In this study, plants of no commercial value were used to investigate their immunostimulatory, antioxidant, anti-inflammatory, anti-bacterial, and disease resistance potential in fish against Aeromonas hydrophila, through fish feed fortification. Methods: The plant was dried at room temperature in the shade, dissolved in methanol, and analysed for biological compounds through GC-MS/MS. DPPH, FRAP, Phenolic, and flavonoids were estimated following standardized protocols. In silico molecular docking was also performed to validate its broad-spectrum activities based on binding affinity with specific proteins. Fish were divided into four groups (n=6; total 30 in a group): Group 1, non-challenged fish (fed on a non-supplemented diet); Group 2, fish challenged with bacteria (fed on a non-supplemented diet); Group 3 and 4, fish challenged with bacteria (A. hydrophila) and fed on plant supplemented feed at 2.5% and 5%. Blood was collected from the fish on 0, 7th, 14th, 21st, and 28th days. Serum was separated for glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase assay (ALP), lysozyme activity assay, superoxide dismutase assay (SOD), lipid peroxidation assay (LPO) and molecular parameters (including cytokine levels) were estimated through ELISA. The phagocytic activity of macrophages from the spleen and head kidney, along with quantitative analysis of immune-related genes, were analysed in different tissue samples. The digestive enzymes (Pepsin, Trypsin, and Chymotrypsin) were also measured to evaluate the effect of plant-supplemented feed on freshwater fish. Results and Discussion: GC-MS/MS analysis of a methanolic extract of plant validated the presence of key compounds having antioxidant, anti-inflammatory, anti-bacterial, anti-inflammatory, and immunomodulatory activities along with disease resistance properties. From biochemical investigations like ABTS, DPPH, and FRAP, the amount of total flavonoids, phenols, and promising binding affinities towards different proteins in molecular docking analysis helped us to realize the potential of this plant that can be used for investigation in the supplemented feed of fish. Measurement liver function tests, ALPs, oxidation-antioxidant enzyme concentrations, and immunoglobulin concentrations in the experimental groups (3 and 4) showed significant improvement as compared to the positive control group. The histopathological evaluation of the liver, spleen, and head kidney supports the biochemical findings. The isolated macrophages from the group fed on supplemented feed showed a higher percentage of phagocytosis and a phagocytic index, indicating an enhanced cell-mediated immune response. Significant improvements in digestive enzymes were also observed in fish fed on supplemented feed, even after weekly challenges with bacteria. Hence, the plant-fortified feed can be recommended as a regular feed to enhance fish immunity and disease resistance against the Aeromonas hydrophila infection after confirmation from the field trial.

Keywords: immunostimulation, antipathogen, plant fortified feed, macrophages, GC-MS/MS, in silico molecular docking

Procedia PDF Downloads 86
6301 The Effect of Total Mixture Concentrate Based on Tofu Waste Silage as Feed on Performance of Lambs

Authors: Yafri Hazbi, Zaenal Bachruddin, Nafiatul Umami, Lies Mira Yusiati

Abstract:

The objective of this study was to identify the benefits of total mixture concentrate based on tofu waste silage (TMC-TWS) as ration containing lactic acid bacteria on performance of lambs. Fifteen weaning lambs (2-3 months old) were randomly divided into two treatment groups, treatment group I (TI) was fed with TMC-TWS as ration and treatment group II (TII) was fed with TMC-TWS fresh (without silage fermentation). The performance of lambs was evaluated on day 0, 15, and 30 to have data of body weight per day. Meanwhile, blood sampling and feces were made on the 30th day to get an analysis on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), and leukocytes (mill/ml)) and the number of worm eggs in feces. The results of this study showed no significant difference between the effect of different feed on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), as well as the number of worm eggs in the feces. However the results showed significant differences if it is low (P<0.05) due to the treatment group based on sex on body weight gain per day, feed conversion rate and the number of erythrocytes.

Keywords: lambs, total mixture concentrate, silage, acid lactid bacteria, blood profile, eggs worm in feces

Procedia PDF Downloads 179
6300 Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt

Authors: Tarek S. Jamil, Ahmed M. Shaban, Eman S. Mansor, Ahmed A. Karim, Azza M. Abdel Aty

Abstract:

In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane.

Keywords: River Nile, NF membrane, pretreatment, UF membrane, water quality

Procedia PDF Downloads 710