Search results for: data block
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26029

Search results for: data block

25519 Enhancing Skills of Mothers of Asthmatic Children in Techniques of Drug Administration

Authors: Erna Judith Roach, Nalini Bhaskaranand

Abstract:

Background & Significance: Asthma is the most common chronic disease among children. Education is the cornerstone of management of asthma to help the affected children. In India there are about 1.5- 3.0 million asthmatic children in the age group of 5-11 years. Many parents face management dilemmas in administration of medications to their children. Mothers being primary caregivers of children are often responsible for administering medications to them. The purpose of the study was to develop an educational package on techniques of drug administration for mothers of asthmatic children and determine its effectiveness in terms of improvement in skill in drug administration. Methodology: A quasi- experimental time series pre-test post -test control group design was used. Mothers of asthmatic children attending paediatric outpatient departments of selected hospitals along with their children between 5 and 12 years were included. Sample size consisted of 40 mothers in the experimental and 40 mothers in the control groups. Block randomization was used to assign samples to both the groups. The data collection instruments used were Baseline Proforma, Clinical Proforma, Daily asthma drug intake and symptoms diary and Observation Rating Scales on technique of using a metered dose inhaler with spacer; metered dose inhaler with facemask; metered dose inhaler alone and dry powder inhaler. The educational package consisted of a video and booklet on techniques of drug administration. Data were collected at baseline, 1, 3 and 6 months. Findings: The mean post-test scores in techniques of drug administration were higher than the mean pre-test scores in the experimental group in all techniques. The Friedman test (p < 0.01), Wilcoxon Signed Rank test (p < 0.008) and Mann Whitney U (p < 0.01) showed statistically significant difference in the experimental group than the control group. There was significant decrease in the average number of symptom days (11 Vs. 4 days/ month) and hospital visits (5 to 1 per month) in the experimental group when compared to the control group. Conclusion: The educational package was found to be effective in improving the skill of mothers in drug administration in all the techniques, especially with using the metered dose inhaler with spacer.

Keywords: childhood asthma, drug administration, mothers of children, inhaler

Procedia PDF Downloads 423
25518 Software Cloning and Agile Environment

Authors: Ravi Kumar, Dhrubajit Barman, Nomi Baruah

Abstract:

Software Cloning has grown an active area in software engineering research community yielding numerous techniques, various tools and other methods for clone detection and removal. The copying, modifying a block of code is identified as cloning as it is the most basic means of software reuse. Agile Software Development is an approach which is currently being used in various software projects, so that it helps to respond the unpredictability of building software through incremental, iterative, work cadences. Software Cloning has been introduced to Agile Environment and many Agile Software Development approaches are using the concept of Software Cloning. This paper discusses the various Agile Software Development approaches. It also discusses the degree to which the Software Cloning concept is being introduced in the Agile Software Development approaches.

Keywords: agile environment, refactoring, reuse, software cloning

Procedia PDF Downloads 531
25517 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data

Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah

Abstract:

At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.

Keywords: Semantic Web, linked open data, database, statistic

Procedia PDF Downloads 176
25516 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges

Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh

Abstract:

For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.

Keywords: guideline, law, data protection officer, personal data

Procedia PDF Downloads 78
25515 Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens

Authors: Fawibe O. O., Mustafa A. A., Oyelakin A. S., Dada O. A., Ojo E. S.

Abstract:

Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens.

Keywords: capsicum frutescens, biochar, nutrient uptake, poultry manure, organic amendment

Procedia PDF Downloads 102
25514 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.

Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies

Procedia PDF Downloads 108
25513 Federated Learning in Healthcare

Authors: Ananya Gangavarapu

Abstract:

Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.

Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment

Procedia PDF Downloads 142
25512 A Preliminary Study on the Effects of Lung Impact on Ballistic Thoracic Trauma

Authors: Amy Pullen, Samantha Rodrigues, David Kieser, Brian Shaw

Abstract:

The aim of the study was to determine if a projectile interacting with the lungs increases the severity of injury in comparison to a projectile interacting with the ribs or intercostal muscle. This comparative study employed a 10% gelatine based model with either porcine ribs or balloons embedded to represent a lung. Four sample groups containing five samples were evaluated; these were control (plain gel), intercostal impact, rib impact, and lung impact. Two ammunition natures were evaluated at a range of 10m; these were 5.56x45mm and 7.62x51mm. Aspects of projectile behavior were quantified including exiting projectile weight, location of yawing, projectile fragmentation and distribution, location and area of the temporary cavity, permanent cavity formation, and overall energy deposition. Major findings included the cavity showing a higher percentage of the projectile weight exit the block than the intercostal and ribs, but similar to the control for the 5.56mm ammunition. However, for the 7.62mm ammunition, the lung was shown to have a higher percentage of the projectile weight exit the block than the control, intercostal and ribs. The total weight of projectile fragments as a function of penetration depth revealed large fluctuations and significant intra-group variation for both ammunition natures. Despite the lack of a clear trend, both plots show that the lung leads to greater projectile fragments exiting the model. The lung was shown to have a later center of the temporary cavity than the control, intercostal and ribs for both ammunition types. It was also shown to have a similar temporary cavity volume to the control, intercostal and ribs for the 5.56mm ammunition and a similar temporary cavity to the intercostal for the 7.62mm ammunition The lung was shown to leave a similar projectile tract than the control, intercostal and ribs for both ammunition types. It was also shown to have larger shear planes than the control and the intercostal, but similar to the ribs for the 5.56mm ammunition, whereas it was shown to have smaller shear planes than the control but similar shear planes to the intercostal and ribs for the 7.62mm ammunition. The lung was shown to have less energy deposited than the control, intercostal and ribs for both ammunition types. This comparative study provides insights into the influence of the lungs on thoracic gunshot trauma. It indicates that the lungs limits projectile deformation and causes a later onset of yawing and subsequently limits the energy deposited along the wound tract creating a deeper and smaller cavity. This suggests that lung impact creates an altered pattern of local energy deposition within the target which will affect the severity of trauma.

Keywords: ballistics, lung, trauma, wounding

Procedia PDF Downloads 172
25511 The Utilization of Big Data in Knowledge Management Creation

Authors: Daniel Brian Thompson, Subarmaniam Kannan

Abstract:

The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.

Keywords: big data, knowledge management, data driven, knowledge creation

Procedia PDF Downloads 117
25510 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 106
25509 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks

Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook

Abstract:

Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.

Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants

Procedia PDF Downloads 73
25508 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya

Authors: Masese Chuma Benard, Martin Onsiro Ronald

Abstract:

Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.

Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)

Procedia PDF Downloads 85
25507 Cloud Design for Storing Large Amount of Data

Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás

Abstract:

Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.

Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization

Procedia PDF Downloads 353
25506 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 382
25505 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 163
25504 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia

Authors: Melaku Tsehay

Abstract:

The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.

Keywords: data quality, immunization, verification factor, pastoralist region

Procedia PDF Downloads 125
25503 Folding Pathway and Thermodynamic Stability of Monomeric GroEL

Authors: Sarita Puri, Tapan K. Chaudhuri

Abstract:

Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue.

Keywords: equilibrium unfolding, monomeric GroEl, spontaneous refolding, thermodynamic stability

Procedia PDF Downloads 282
25502 Identifying Critical Success Factors for Data Quality Management through a Delphi Study

Authors: Maria Paula Santos, Ana Lucas

Abstract:

Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.

Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort

Procedia PDF Downloads 218
25501 Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System

Authors: Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns

Abstract:

Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system.

Keywords: bio-stimulants, soil microbial enzymes, synthetic agrochemicals, tillage

Procedia PDF Downloads 82
25500 An Academic Theory on a Sustainable Evaluation of Achatina Fulica Within Ethekwini, KwaZulu-Natal

Authors: Sibusiso Trevor Tshabalala, Samuel Lubbe, Vince Vuledzani Ndou

Abstract:

Dependency on chemicals has had many disadvantages in pest management control strategies. Such genetic rodenticide resistance and secondary exposure risk are what is currently being experienced. Emphasis on integrated pest management suggests that to control future pests, early intervention and economic threshold development are key starting points in crop production. The significance of this research project is to help establish a relationship between Giant African Land Snail (Achatina Fulica) solution extract, its shell chemical properties, and farmer’s perceptions of biological control in eThekwini Municipality Agri-hubs. A mixed design approach to collecting data will be explored using a trial layout in the field and through interviews. The experimental area will be explored using a split-plot design that will be replicated and arranged in a randomised complete block design. The split-plot will have 0, 10, 20 and 30 liters of water to one liter of snail solution extract. Plots were 50 m² each with a spacing of 12 m between each plot and a plant spacing of 0.5 m (inter-row) ‘and 0.5 m (intra-row). Trials will be irrigated using sprinkler irrigation, with objective two being added to the mix every 4-5 days. The expected outcome will be improved soil fertility and micro-organisms population proliferation.

Keywords: giant african land snail, integrated pest management, photosynthesis, genetic rodenticide resistance, control future pests, shell chemical properties

Procedia PDF Downloads 106
25499 Modulation of the Innate Immune Response in Bovine Udder Tissue by Epigenetic Modifiers

Authors: Holm Zerbe, Laura Macias, Hans-Joachim Schuberth, Wolfram Petzl

Abstract:

Mastitis is among the most important production diseases in cows. It accounts for large parts of antimicrobial drug use in the dairy industry worldwide. Due to the imminent normative to reduce the use of antimicrobial drugs in livestock, new ways for therapy and prophylaxis of mastitis are needed. Recently epigenetic regulation of inflammation by chromatin modifications has increasingly drawn attention. Currently, some epigenetic modifiers have already been approved for the use in humans, however little is known about their actions in the bovine system. The aim of our study was to investigate whether three selected epigenetic modifiers (Vitamin D3, SAHA and S2101) influence the initial immune response towards mastitis pathogens in bovine udder tissue in vitro. Tissue explants of the teat cistern and udder parenchyma were collected from 21 cows and were incubated for 36 hours in the absence and presence of epigenetic modifiers. Additionally, the tissue was stimulated with heat-inactivated particles of Escherichia coli and Staphylococcus aureus, which are regarded as two of the most important mastitis pathogens. After incubation, the explants were tested by RT-qPCR for transcript abundances of immune-related candidate genes. Gene expression was validated in culture supernatants by an AlphaLISA assay. Furthermore, the culture supernatants were analyzed for their chemotactic capacity through a chemotaxis assay. Statistical analysis of data was performed with the program ‘R’ version 3.2.3. Vitamin D3 had no effect on the immune response of udder tissue in vitro after stimulation with mastitis pathogens. The epigenetic modifiers SAHA and S2101 however significantly blocked the pathogen-induced upregulation of CXCL8, TNFα, S100A9 and LAP (P < 0.05). The regulation of IL10 was not affected by treatment with SAHA and S2101. Transcript abundances for CXCL8 were reflected by IL8 contents and chemotactic activity in culture supernatants. In conclusion, these data show the potential of epigenetic modifiers (SAHA and S2101) to block overshooting inflammation in the udder. Thus epigenetic modifiers may serve in future as immune modulators for the treatment and/or prophylaxis of clinical mastitis. (Funded by Deutsche Forschungsgemeinschaft PE 1495/2-1).

Keywords: mastitis, cattle, epigenetics, immunomodulation

Procedia PDF Downloads 235
25498 Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course

Authors: Peter Akayuure

Abstract:

Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students.

Keywords: geometric thinking, van Hiele’s, UEW learning management system, undergraduate geometry

Procedia PDF Downloads 130
25497 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 124
25496 A Cooperative Transmission Scheme Using Two Sources Based on OFDM System

Authors: Bit-Na Kwon, Dong-Hyun Ha, Hyoung-Kyu Song

Abstract:

In wireless communication, space-time block code (STBC), cyclic delay diversity (CDD) and space-time cyclic delay diversity (STCDD) are used as the spatial diversity schemes and have been widely studied for the reliable communication. If these schemes are used, the communication system can obtain the improved performance. However, the quality of the system is degraded when the distance between a source and a destination is distant in wireless communication system. In this paper, the cooperative transmission scheme using two sources is proposed and improves the performance of the wireless communication system.

Keywords: OFDM, Cooperative communication, CDD, STBC, STCDD

Procedia PDF Downloads 468
25495 On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs

Authors: S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. Suleiman

Abstract:

The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation.

Keywords: backward differentiation formulae, block backward differentiation formulae, stiff ordinary differential equation, variable step size

Procedia PDF Downloads 497
25494 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 560
25493 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 147
25492 The Development of Asset Valuation Techniques for Government Business Enterprises in Australia

Authors: Malcolm Abbott, Angela Tan-Kantoor

Abstract:

The purpose of this paper is to look at the varieties of ways in which regulators have undertaken asset valuations in Australia of government business enterprises as part of utility regulation. Regulation of the monopoly elements, through use of a building block approach, led to a need to estimate regulated asset bases. This development has had an influence on the manner in which Australian companies (both government and privately owned ones) have valued assets for the purpose of financial reporting. As the regulators in Australia did not always use a consistent approach it had meant that a variety of ways have been used to value the assets of government owned enterprises, and meant a varied impact on asset valuation more generally.

Keywords: sset valuation, regulation, government business enterprises

Procedia PDF Downloads 310
25491 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 84
25490 Estimation of Carbon Losses in Rice: Wheat Cropping System of Punjab, Pakistan

Authors: Saeed Qaisrani

Abstract:

The study was conducted to observe carbon and nutrient loss by burning of rice residues on rice-wheat cropping system The rice crop was harvested to conduct the experiment in a randomized complete block design (RCBD) with factors and 4 replications with a net plot size of 10 m x 20 m. Rice stubbles were managed by two methods i.e. Incorporation & burning of rice residues. Soil samples were taken to a depth of 30 cm before sowing & after harvesting of wheat. Wheat was sown after harvesting of rice by three practices i.e. Conventional tillage, Minimum tillage and Zero tillage to observe best tillage practices. Laboratory and field experiments were conducted on wheat to assess best tillage practice and residues management method with estimation of carbon losses. Data on the following parameters; establishment count, plant height, spike length, number of grains per spike, biological yield, fat content, carbohydrate content, protein content, and harvest index were recorded to check wheat quality & ensuring food security in the region. Soil physico-chemical analysis i.e. pH, electrical conductivity, organic matter, nitrogen, phosphorus, potassium, and carbon were done in soil fertility laboratory. Substantial results were found on growth, yield and related parameters of wheat crop. The collected data were examined statistically with economic analysis to estimate the cost-benefit ratio of using different tillage techniques and residue management practices. Obtained results depicted that Zero tillage method have positive impacts on growth, yield and quality of wheat, Moreover, it is cost effective methodology. Similarly, Incorporation is suitable and beneficial method for soil due to more nutrients provision and reduce the need of fertilizers. Burning of rice stubbles has negative impact including air pollution, nutrient loss, microbes died and carbon loss. Recommended the zero tillage technology to reduce carbon losses along with food security in Pakistan.

Keywords: agricultural agronomy, food security, carbon sequestration, rice-wheat cropping system

Procedia PDF Downloads 277