Search results for: computer aided teaching
365 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model
Procedia PDF Downloads 208364 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 385363 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.Keywords: canny pruning, hand recognition, machine learning, skin tracking
Procedia PDF Downloads 185362 Sexuality Education through Media and Technology: Addressing Unmet Needs of Adolescents in Bangladesh
Authors: Farhana Alam Bhuiyan, Saad Khan, Tanveer Hassan, Jhalok Ranjon Talukder, Syeda Farjana Ahmed, Rahil Roodsaz, Els Rommes, Sabina Faiz Rashid
Abstract:
Breaking the shame’ is a 3 year (2015-2018) qualitative implementation research project which investigates several aspects of sexual and reproductive health and rights (SRHR) issues for adolescents living in Bangladesh. Scope of learning SRHR issues for adolescents is limited here due to cultural and religious taboos. This study adds to the ongoing discussions around adolescent’s SRHR needs and aims to, 1) understand the overall SRHR needs of urban and rural unmarried female and male adolescents and the challenges they face, 2) explore existing gaps in the content of SRHR curriculum and 3) finally, addresses some critical knowledge gaps by developing and implementing innovative SRHR educational materials. 18 in-depth interviews (IDIs) and 10 focus-group discussions (FGDs) with boys and 21 IDIs and 14 FGDs with girls of ages 13-19, from both urban and rural setting took place. Curriculum materials from two leading organizations, Unite for Body Rights (UBR) Alliance Bangladesh and BRAC Adolescent Development Program (ADP) were also reviewed, with discussions with 12 key program staff. This paper critically analyses the relevance of some of the SRHR topics that are covered, the challenges with existing pedagogic approaches and key sexuality issues that are not covered in the content, but are important for adolescents. Adolescents asked for content and guidance on a number of topics which remain missing from the core curriculum, such as emotional coping mechanisms particularly in relationships, bullying, impact of exposure to porn, and sexual performance anxiety. Other core areas of concern were effects of masturbation, condom use, sexual desire and orientation, which are mentioned in the content, but never discussed properly, resulting in confusion. Due to lack of open discussion around sexuality, porn becomes a source of information for the adolescents. For these reasons, several myths and misconceptions regarding SRHR issues like body, sexuality, agency, and gender roles still persist. The pedagogical approach is very didactic, and teachers felt uncomfortable to have discussions on certain SRHR topics due to cultural taboos or shame and stigma. Certain topics are favored- such as family planning, menstruation- and presented with an emphasis on biology and risk. Rigid formal teaching style, hierarchical power relations between students and most teachers discourage questions and frank conversations. Pedagogy approaches within classrooms play a critical role in the sharing of knowledge. The paper also describes the pilot approaches to implementing new content in SRHR curriculum. After a review of findings, three areas were selected as critically important, 1) myths and misconceptions 2) emotional management challenges, and 3) how to use condom, that have come up from adolescents. Technology centric educational materials such as web page based information platform and you tube videos are opted for which allow adolescents to bypass gatekeepers and learn facts and information from a legitimate educational site. In the era of social media, when information is always a click away, adolescents need sources that are reliable and not overwhelming. The research aims to ensure that adolescents learn and apply knowledge effectively, through creating the new materials and making it accessible to adolescents.Keywords: adolescents, Bangladesh, media, sexuality education, unmet needs
Procedia PDF Downloads 230361 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 77360 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste
Authors: Timilehin Martins Oyinloye, Won Byong Yoon
Abstract:
Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste
Procedia PDF Downloads 69359 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention
Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva
Abstract:
The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms
Procedia PDF Downloads 133358 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques
Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan
Abstract:
A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle
Procedia PDF Downloads 320357 The Development, Composition, and Implementation of Vocalises as a Method of Technical Training for the Adult Musical Theatre Singer
Authors: Casey Keenan Joiner, Shayna Tayloe
Abstract:
Classical voice training for the novice singer has long relied on the guidance and instruction of vocalise collections, such as those written and compiled by Marchesi, Lütgen, Vaccai, and Lamperti. These vocalise collections purport to encourage healthy vocal habits and instill technical longevity in both aspiring and established singers, though their scope has long been somewhat confined to the classical idiom. For pedagogues and students specializing in other vocal genres, such as musical theatre and CCM (contemporary commercial music,) low-impact and pertinent vocal training aids are in short supply, and much of the suggested literature derives from classical methodology. While the tenants of healthy vocal production remain ubiquitous, specific stylistic needs and technical emphases differ from genre to genre and may require a specified extension of vocal acuity. As musical theatre continues to grow in popularity at both the professional and collegiate levels, the need for specialized training grows as well. Pedagogical literature geared specifically towards musical theatre (MT) singing and vocal production, while relatively uncommon, is readily accessible to the contemporary educator. Practitioners such as Norman Spivey, Mary Saunders Barton, Claudia Friedlander, Wendy Leborgne, and Marci Rosenberg continue to publish relevant research in the field of musical theatre voice pedagogy and have successfully identified many common MT vocal faults, their subsequent diagnoses, and their eventual corrections. Where classical methodology would suggest specific vocalises or training exercises to maintain corrected vocal posture following successful fault diagnosis, musical theatre finds itself without a relevant body of work towards which to transition. By analyzing the existing vocalise literature by means of a specialized set of parameters, including but not limited to melodic variation, rhythmic complexity, vowel utilization, and technical targeting, we have composed a set of vocalises meant specifically to address the training and conditioning of adult musical theatre voices. These vocalises target many pedagogical tenants in the musical theatre genre, including but not limited to thyroarytenoid-dominant production, twang resonance, lateral vowel formation, and “belt-mix.” By implementing these vocalises in the musical theatre voice studio, pedagogues can efficiently communicate proper musical theatre vocal posture and kinesthetic connection to their students, regardless of age or level of experience. The composition of these vocalises serves MT pedagogues on both a technical level as well as a sociological one. MT is a relative newcomer on the collegiate stage and the academization of musical theatre methodologies has been a slow and arduous process. The conflation of classical and MT techniques and training methods has long plagued the world of voice pedagogy and teachers often find themselves in positions of “cross-training,” that is, teaching students of both genres in one combined voice studio. As MT continues to establish itself on academic platforms worldwide, genre-specific literature and focused studies are both rare and invaluable. To ensure that modern students receive exacting and definitive training in their chosen fields, it becomes increasingly necessary for genres such as musical theatre to boast specified literature and a collection of musical theatre-specific vocalises only aids in this effort. This collection of musical theatre vocalises is the first of its kind and provides genre-specific studios with a basis upon which to grow healthy, balanced voices built for the harsh conditions of the modern theatre stage.Keywords: voice pedagogy, targeted methodology, musical theatre, singing
Procedia PDF Downloads 156356 Memory Retrieval and Implicit Prosody during Reading: Anaphora Resolution by L1 and L2 Speakers of English
Authors: Duong Thuy Nguyen, Giulia Bencini
Abstract:
The present study examined structural and prosodic factors on the computation of antecedent-reflexive relationships and sentence comprehension in native English (L1) and Vietnamese-English bilinguals (L2). Participants read sentences presented on the computer screen in one of three presentation formats aimed at manipulating prosodic parsing: word-by-word (RSVP), phrase-segment (self-paced), or whole-sentence (self-paced), then completed a grammaticality rating and a comprehension task (following Pratt & Fernandez, 2016). The design crossed three factors: syntactic structure (simple; complex), grammaticality (target-match; target-mismatch) and presentation format. An example item is provided in (1): (1) The actress that (Mary/John) interviewed at the awards ceremony (about two years ago/organized outside the theater) described (herself/himself) as an extreme workaholic). Results showed that overall, both L1 and L2 speakers made use of a good-enough processing strategy at the expense of more detailed syntactic analyses. L1 and L2 speakers’ comprehension and grammaticality judgements were negatively affected by the most prosodically disrupting condition (word-by-word). However, the two groups demonstrated differences in their performance in the other two reading conditions. For L1 speakers, the whole-sentence and the phrase-segment formats were both facilitative in the grammaticality rating and comprehension tasks; for L2, compared with the whole-sentence condition, the phrase-segment paradigm did not significantly improve accuracy or comprehension. These findings are consistent with the findings of Pratt & Fernandez (2016), who found a similar pattern of results in the processing of subject-verb agreement relations using the same experimental paradigm and prosodic manipulation with English L1 and L2 English-Spanish speakers. The results provide further support for a Good-Enough cue model of sentence processing that integrates cue-based retrieval and implicit prosodic parsing (Pratt & Fernandez, 2016) and highlights similarities and differences between L1 and L2 sentence processing and comprehension.Keywords: anaphora resolution, bilingualism, implicit prosody, sentence processing
Procedia PDF Downloads 152355 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 482354 Exploring Multimodal Communication: Intersections of Language, Gesture, and Technology
Authors: Rasha Ali Dheyab
Abstract:
In today's increasingly interconnected and technologically-driven world, communication has evolved beyond traditional verbal exchanges. This paper delves into the fascinating realm of multimodal communication, a dynamic field at the intersection of linguistics, gesture studies, and technology. The study of how humans convey meaning through a combination of spoken language, gestures, facial expressions, and digital platforms has gained prominence as our modes of interaction continue to diversify. This exploration begins by examining the foundational theories in linguistics and gesture studies, tracing their historical development and mutual influences. It further investigates the role of nonverbal cues, such as gestures and facial expressions, in augmenting and sometimes even altering the meanings conveyed by spoken language. Additionally, the paper delves into the modern technological landscape, where emojis, GIFs, and other digital symbols have emerged as new linguistic tools, reshaping the ways in which we communicate and express emotions. The interaction between traditional and digital modes of communication is a central focus of this study. The paper investigates how technology has not only introduced new modes of expression but has also influenced the adaptation of existing linguistic and gestural patterns in online discourse. The emergence of virtual reality and augmented reality environments introduces yet another layer of complexity to multimodal communication, offering new avenues for studying how humans navigate and negotiate meaning in immersive digital spaces. Through a combination of literature review, case studies, and theoretical analysis, this paper seeks to shed light on the intricate interplay between language, gesture, and technology in the realm of multimodal communication. By understanding how these diverse modes of expression intersect and interact, we gain valuable insights into the ever-evolving nature of human communication and its implications for fields ranging from linguistics and psychology to human-computer interaction and digital anthropology.Keywords: multimodal communication, linguistics ., gesture studies., emojis., verbal communication., digital
Procedia PDF Downloads 82353 Communicating Meaning through Translanguaging: The Case of Multilingual Interactions of Algerians on Facebook
Authors: F. Abdelhamid
Abstract:
Algeria is a multilingual speech community where individuals constantly mix between codes in spoken discourse. Code is used as a cover term to refer to the existing languages and language varieties which include, among others, the mother tongue of the majority Algerian Arabic, the official language Modern Standard Arabic and the foreign languages French and English. The present study explores whether Algerians mix between these codes in online communication as well. Facebook is the selected platform from which data is collected because it is the preferred social media site for most Algerians and it is the most used one. Adopting the notion of translanguaging, this study attempts explaining how users of Facebook use multilingual messages to communicate meaning. Accordingly, multilingual interactions are not approached from a pejorative perspective but rather as a creative linguistic behavior that multilingual utilize to achieve intended meanings. The study is intended as a contribution to the research on multilingualism online because although an extensive literature has investigated multilingualism in spoken discourse, limited research investigated it in the online one. Its aim is two-fold. First, it aims at ensuring that the selected platform for analysis, namely Facebook, could be a source for multilingual data to enable the qualitative analysis. This is done by measuring frequency rates of multilingual instances. Second, when enough multilingual instances are encountered, it aims at describing and interpreting some selected ones. 120 posts and 16335 comments were collected from two Facebook pages. Analysis revealed that third of the collected data are multilingual messages. Users of Facebook mixed between the four mentioned codes in writing their messages. The most frequent cases are mixing between Algerian Arabic and French and between Algerian Arabic and Modern Standard Arabic. A focused qualitative analysis followed where some examples are interpreted and explained. It seems that Algerians mix between codes when communicating online despite the fact that it is a conscious type of communication. This suggests that such behavior is not a random and corrupted way of communicating but rather an intentional and natural one.Keywords: Algerian speech community, computer mediated communication, languages in contact, multilingualism, translanguaging
Procedia PDF Downloads 132352 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator
Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski
Abstract:
Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.Keywords: human robot interaction, drones, gestures, robotics
Procedia PDF Downloads 161351 Mitigating Self-Regulation Issues in the Online Instruction of Math
Authors: Robert Vanderburg, Michael Cowling, Nicholas Gibson
Abstract:
Mathematics is one of the core subjects taught in the Australian K-12 education system and is considered an important component for future studies in areas such as engineering and technology. In addition to this, Australia has been a world leader in distance education due to the vastness of its geographic landscape. Despite this, research is still needed on distance math instruction. Even though delivery of curriculum has given way to online studies, and there is a resultant push for computer-based (PC, tablet, smartphone) math instruction, much instruction still involves practice problems similar to those original curriculum packs, without the ability for students to self-regulate their learning using the full interactive capabilities of these devices. Given this need, this paper addresses issues students have during online instruction. This study consists of 32 students struggling with mathematics enrolled in a math tutorial conducted in an online setting. The study used a case study design to understand some of the blockades hindering the students’ success. Data was collected by tracking students practice and quizzes, tracking engagement of the site, recording one-on-one tutorials, and collecting data from interviews with the students. Results revealed that when students have cognitively straining tasks in an online instructional setting, the first thing to dissipate was their ability to self-regulate. The results also revealed that instructors could ameliorate the situation and provided useful data on strategies that could be used for designing future online tasks. Specifically, instructors could utilize cognitive dissonance strategies to reduce the cognitive drain of the tasks online. They could segment the instruction process to reduce the cognitive demands of the tasks and provide in-depth self-regulatory training, freeing mental capacity for the mathematics content. Finally, instructors could provide specific scheduling and assignment structure changes to reduce the amount of student centered self-regulatory tasks in the class. These findings will be discussed in more detail and summarized in a framework that can be used for future work.Keywords: digital education, distance education, mathematics education, self-regulation
Procedia PDF Downloads 136350 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation
Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda
Abstract:
A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation
Procedia PDF Downloads 432349 Designing of Induction Motor Efficiency Monitoring System
Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei
Abstract:
Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.Keywords: induction motor, efficiency, power losses, monitoring, embedded design
Procedia PDF Downloads 350348 Organ Dose Calculator for Fetus Undergoing Computed Tomography
Authors: Choonsik Lee, Les Folio
Abstract:
Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.Keywords: computed tomography, fetal dose, pregnant women, radiation dose
Procedia PDF Downloads 141347 Effectiveness of Metacognitive Skills in Comprehension Instruction for Elementary Students
Authors: Mahdi Taheri Asl
Abstract:
Using a variety of strategies to read text plays an important role to make students strategic independent, strategic, and metacognitive readers. Given the importance of comprehension instruction (CI), it is essential to support the fostering comprehension skills at elementary age students, particularly those who struggle with or dislike reading. One of the main components of CI is activating metacognitive skills, which double function of elementary students. Thus, it’s important to evaluate the implemented comprehension interventions to inform reading specialist and teachers. There has been limited review research in the area of CI, so the conduction review research is required. The purpose of this review is to examine the effectiveness of metacognitive reading strategies in a regular classroom environment with elementary aged students. We develop five inclusion criteria to identify researches relevant to our research. First, the article had to be published in a peer-reviewed journal from 2000 to 2023. second, the study had to include participants in elementary school it could include of special education students. Third, the intervention needed to be involved with metacognitive strategies. Fourth, the articles had to use experimental or quasi experimental design. The last one needed to include measurement of reading performance in pre and post intervention. We used computer data-based site like Eric, PsychoINFO, and google scholar to search for articles that met these criteria. we used the following search terms: comprehension instruction, meta cognitive strategies, and elementary school. The next step was to do an ancestral search that get in reviewing the relevant studies cited in the articles that were found in the database search. We identified 30studies in the initial searches. After coding agreement, we synthesized 13 with respect to the participant, setting, research design, dependent variables, measures, the intervention used by instructors, and general outcomes. The finding show metacognitive strategies were effective to empower student’s comprehension skills. It also showed that linguistic instruction will be effective if got mixed with metacognitive strategies. The research provides a useful view into reading intervention. Despite the positive effect of metacognitive instruction on students’ comprehension skills, it is not widely used in classroom.Keywords: comprehension instruction, metacogntion, metacognitive skills, reading intervention
Procedia PDF Downloads 73346 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application
Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada
Abstract:
This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy
Procedia PDF Downloads 224345 Ergonomic Adaptations in Visually Impaired Workers - A Literature Review
Authors: Kamila Troper, Pedro Mestre, Maria Lurdes Menano, Joana Mendonça, Maria João Costa, Sandra Demel
Abstract:
Introduction: Visual impairment is a problem that has an influence on hundreds of thousands of people all over the world. Although it is possible for a Visually Impaired person to do most jobs, the right training, technological assistance, and emotional support are essential. Ergonomics be able to solve many of the problems/issues with the relative ease of positioning, lighting and design of the workplace. A little forethought can make a tremendous difference to the ease with which a person with an impairment function. Objectives: Review the main ergonomic adaptation measures reported in the literature in order to promote better working conditions and safety measures for the visually impaired. Methodology: This was an exploratory-descriptive, qualitative literature systematic review study. The main databases used were: PubMed, BIREME, LILACS, with articles and studies published between 2000 and 2021. Results: Based on the principles of the theoretical references of ergonomic analysis of work, the main restructuring of the physical space of the workstations were: Accessibility facilities and assistive technologies; A screen reader that captures information from a computer and sends it in real-time to a speech synthesizer or Braille terminal; Installations of software with voice recognition, Monitors with enlarged screens; Magnification software; Adequate lighting, magnifying lenses in addition to recommendations regarding signage and clearance of the places where the visually impaired pass through. Conclusions: Employability rates for people with visual impairments(both those who are blind and those who have low vision)are low and continue to be a concern to the world and for researchers as a topic of international interest. Although numerous authors have identified barriers to employment and proposed strategies to remediate or circumvent those barriers, people with visual impairments continue to experience high rates of unemployment.Keywords: ergonomic adaptations, visual impairments, ergonomic analysis of work, systematic review
Procedia PDF Downloads 183344 Kinematic Analysis of the Calf Raise Test Using a Mobile iOS Application: Validation of the Calf Raise Application
Authors: Ma. Roxanne Fernandez, Josie Athens, Balsalobre-Fernandez, Masayoshi Kubo, Kim Hébert-Losier
Abstract:
Objectives: The calf raise test (CRT) is used in rehabilitation and sports medicine to evaluate calf muscle function. For testing, individuals stand on one leg and go up on their toes and back down to volitional fatigue. The newly developed Calf Raise application (CRapp) for iOS uses computer-vision algorithms enabling objective measurement of CRT outcomes. We aimed to validate the CRapp by examining its concurrent validity and agreement levels against laboratory-based equipment and establishing its intra- and inter-rater reliability. Methods: CRT outcomes (i.e., repetitions, positive work, total height, peak height, fatigue index, and peak power) were assessed in thirteen healthy individuals (6 males, 7 females) on three occasions and both legs using the CRapp, 3D motion capture, and force plate technologies simultaneously. Data were extracted from two markers: one placed immediately below the lateral malleolus and another on the heel. Concurrent validity and agreement measures were determined using intraclass correlation coefficients (ICC₃,ₖ), typical errors expressed as coefficient of variations (CV), and Bland-Altman methods to assess biases and precision. Reliability was assessed using ICC3,1 and CV values. Results: Validity of CRapp outcomes was good to excellent across measures for both markers (mean ICC ≥0.878), with precision plots showing good agreement and precision. CV ranged from 0% (repetitions) to 33.3% (fatigue index) and were, on average better for the lateral malleolus marker. Additionally, inter- and intra-rater reliability were excellent (mean ICC ≥0.949, CV ≤5.6%). Conclusion: These results confirm the CRapp is valid and reliable within and between users for measuring CRT outcomes in healthy adults. The CRapp provides a tool to objectivise CRT outcomes in research and practice, aligning with recent advances in mobile technologies and their increased use in healthcare.Keywords: calf raise test, mobile application, validity, reliability
Procedia PDF Downloads 166343 A Study on ZnO Nanoparticles Properties: An Integration of Rietveld Method and First-Principles Calculation
Authors: Kausar Harun, Ahmad Azmin Mohamad
Abstract:
Zinc oxide (ZnO) has been extensively used in optoelectronic devices, with recent interest as photoanode material in dye-sensitize solar cell. Numerous methods employed to experimentally synthesized ZnO, while some are theoretically-modeled. Both approaches provide information on ZnO properties, but theoretical calculation proved to be more accurate and timely effective. Thus, integration between these two methods is essential to intimately resemble the properties of synthesized ZnO. In this study, experimentally-grown ZnO nanoparticles were prepared by sol-gel storage method with zinc acetate dihydrate and methanol as precursor and solvent. A 1 M sodium hydroxide (NaOH) solution was used as stabilizer. The optimum time to produce ZnO nanoparticles were recorded as 12 hours. Phase and structural analysis showed that single phase ZnO produced with wurtzite hexagonal structure. Further work on quantitative analysis was done via Rietveld-refinement method to obtain structural and crystallite parameter such as lattice dimensions, space group, and atomic coordination. The lattice dimensions were a=b=3.2498Å and c=5.2068Å which were later used as main input in first-principles calculations. By applying density-functional theory (DFT) embedded in CASTEP computer code, the structure of synthesized ZnO was built and optimized using several exchange-correlation functionals. The generalized-gradient approximation functional with Perdew-Burke-Ernzerhof and Hubbard U corrections (GGA-PBE+U) showed the structure with lowest energy and lattice deviations. In this study, emphasize also given to the modification of valence electron energy level to overcome the underestimation in DFT calculation. Both Zn and O valance energy were fixed at Ud=8.3 eV and Up=7.3 eV, respectively. Hence, the following electronic and optical properties of synthesized ZnO were calculated based on GGA-PBE+U functional within ultrasoft-pseudopotential method. In conclusion, the incorporation of Rietveld analysis into first-principles calculation was valid as the resulting properties were comparable with those reported in literature. The time taken to evaluate certain properties via physical testing was then eliminated as the simulation could be done through computational method.Keywords: density functional theory, first-principles, Rietveld-refinement, ZnO nanoparticles
Procedia PDF Downloads 309342 Smart Automated Furrow Irrigation: A Preliminary Evaluation
Authors: Jasim Uddin, Rod Smith, Malcolm Gillies
Abstract:
Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs.Keywords: furrow irrigation, smart automation, infiltration, SISCO, real-time irrigation, adoptive control
Procedia PDF Downloads 453341 Four-Electron Auger Process for Hollow Ions
Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola
Abstract:
A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method
Procedia PDF Downloads 154340 FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas
Authors: Yusuf Ulaş Kabukçu, Si̇nan Çeli̇k, Onur Salan, Mai̇de Altuntaş, Mert Can Dalkiran, Gökseni̇n Bozdağ, Metehan Bulut, Fati̇h Yaman
Abstract:
This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection.Keywords: doppler radar, FMCW, range detection, speed detection
Procedia PDF Downloads 398339 A Study of Topical and Similarity of Sebum Layer Using Interactive Technology in Image Narratives
Authors: Chao Wang
Abstract:
Under rapid innovation of information technology, the media plays a very important role in the dissemination of information, and it has a totally different analogy generations face. However, the involvement of narrative images provides more possibilities of narrative text. "Images" through the process of aperture, a camera shutter and developable photosensitive processes are manufactured, recorded and stamped on paper, displayed on a computer screen-concretely saved. They exist in different forms of files, data, or evidence as the ultimate looks of events. By the interface of media and network platforms and special visual field of the viewer, class body space exists and extends out as thin as sebum layer, extremely soft and delicate with real full tension. The physical space of sebum layer of confuses the fact that physical objects exist, needs to be established under a perceived consensus. As at the scene, the existing concepts and boundaries of physical perceptions are blurred. Sebum layer physical simulation shapes the “Topical-Similarity" immersing, leading the contemporary social practice communities, groups, network users with a kind of illusion without the presence, i.e. a non-real illusion. From the investigation and discussion of literatures, digital movies editing manufacture and produce the variability characteristics of time (for example, slices, rupture, set, and reset) are analyzed. Interactive eBook has an unique interaction in "Waiting-Greeting" and "Expectation-Response" that makes the operation of image narrative structure more interpretations functionally. The works of digital editing and interactive technology are combined and further analyze concept and results. After digitization of Interventional Imaging and interactive technology, real events exist linked and the media handing cannot be cut relationship through movies, interactive art, practical case discussion and analysis. Audience needs more rational thinking about images carried by the authenticity of the text.Keywords: sebum layer, topical and similarity, interactive technology, image narrative
Procedia PDF Downloads 389338 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL
Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara
Abstract:
PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.Keywords: cognition, database, PostgreSQL, text-editor, visual-editor
Procedia PDF Downloads 284337 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 320336 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep
Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk
Abstract:
The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas
Procedia PDF Downloads 228