Search results for: cost efficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9956

Search results for: cost efficient

4796 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning

Authors: Grienggrai Rajchakit

Abstract:

As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.

Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning

Procedia PDF Downloads 143
4795 Functionalized Mesoporous Silica: Absorbents for Water Purification

Authors: Saima Nasreen, Uzaira Rafique, Shery Ehrman, Muhammad Aqeel Ashraf

Abstract:

The release of heavy metals into the environment is a potential threat to water and soil quality as well as to plant, animal and human health. In current research work, organically functionalized mesoporous silicates (MSU-H) were prepared by the co-condensation between sodium silicate and oregano alkoxysilanes in the presence of the nonionic surfactant triblock copolymer P104. The surfactant was used as a template for improving the porosity of the hybrid gels. Synthesized materials were characterized by TEM, FT-IR, SEM/EDX, TG, surface area analysis. The surface morphology and textural properties of such materials varied with various kinds of groups in the channels. In this study, removal of some heavy metals ions from aqueous solution by adsorption process was investigated. Batch adsorption studies show that the adsorption capacity of metal ions on the functionalized silicates is more than that on pure MSU-H. Data shows adsorption on synthesized materials is a time efficient process, suggesting adsorption on external surface as well as the mesoporous process. Adsorption models of Langmuir, Freundlich, and Temkin depicted equal goodness for all adsorbents, whereas pseudo 2nd order kinetics is in best agreement with experimental data.

Keywords: heavy metals, mesoporous silica, hybrid, adsorption, freundlich, langmuir, temkin

Procedia PDF Downloads 255
4794 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification

Procedia PDF Downloads 415
4793 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions

Procedia PDF Downloads 259
4792 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 227
4791 An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil?

Authors: Celia Marilia Martins, Sonia I. V. Guilundo, Iris M. Victorino, Antonio O. Quilambo

Abstract:

In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals.

Keywords: contaminated soil, edible plants, heavy metals, phytoremediation

Procedia PDF Downloads 356
4790 Cascaded Multi-Level Single-Phase Switched Boost Inverter

Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho

Abstract:

Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.

Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter

Procedia PDF Downloads 321
4789 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 131
4788 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 315
4787 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 400
4786 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 61
4785 Adoption of International Financial Reporting Standards and Earnings Quality in Listed Deposit Money Banks in Nigeria

Authors: Shehu Usman Hassan

Abstract:

Published accounting information in financial statements are required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. This paper investigates firm attributes from perspective of structure, monitoring, performance elements of listed deposit money banks in Nigeria. The study adopted correlational research design with balanced panel data of 14 banks as sample of the study using multiple regression as a tool of analysis. The result reveals that firms attributes (leverage, profitability, liquidity, bank size and bank growth) has as significant influence on earnings quality of listed deposit money banks in Nigeria after the adoption of IFRS, while the pre period shows that the selected firm attributes has no significant impact on earnings quality. It is therefore concluded that the adoption of IFRS is right and timely.

Keywords: earnings quality, firm attributes, listed deposit money bank, Nigeria

Procedia PDF Downloads 494
4784 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa

Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba

Abstract:

In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.

Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment

Procedia PDF Downloads 242
4783 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach

Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha

Abstract:

Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.

Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy

Procedia PDF Downloads 87
4782 Nanohybrids for Energy Storage Devices

Authors: O. Guellati, A. Harat, F. Djefaflia, N. Habib, A. Nait-Merzoug, J. El Haskouri, D. Momodu, N. Manyala, D. Bégin, M. Guerioune

Abstract:

We report a facile and low-cost free-template synthesis method was used to synthesize mesoporous smart multifunctional nanohybrids based on Graphene/PANI nanofibers micro/nanostructures with very interesting physic-chemical properties and faradic electrochemical behavior of these products was investigated. These nanohybrid products have been characterized quantitatively and qualitatively using different techniques, such as XRD / FTIR, Raman, XPS spectroscopy, Field Emission SEM and High-Resolution TEM microscopy, BET textural analysis, electrochemical measurements (CV, CD, EIS). Moreover, the electrochemical measurements performed in a 6 M KOH aqueous electrolyte depicted excellent electrochemical performance ascribed to the optimized composition of hydroxides et PANI nanofibers. An exceptionally notable specific capacitance between 800  and 2000 F. g-1 was obtained at 5  mV. s-1 scan rate for these synthesized products depends on the optimized growth conditions. We found much better nanohybrids by reinforcing hydroxides or conduction polymer nanofibers with carbonaceous nanomaterials depicting their potential as suitable materials for energy storage devices.

Keywords: nanohybrid materials, conducting polymers, carbonaceous nanomaterials, supercapacitors, energy storage

Procedia PDF Downloads 55
4781 Testing Plastic-Sand Construction Blocks Made from Recycled Polyethylene Terephthalate (rPET)

Authors: Cassi Henderson, Lucia Corsini, Shiv Kapila, Egle Augustaityte, Tsemaye Uwejamomere Zinzan Gurney, Aleyna Yildirim

Abstract:

Plastic pollution is a major threat to human and planetary health. In Low- and Middle-Income Countries, plastic waste poses a major problem for marginalized populations who lack access to formal waste management systems. This study explores the potential for converting waste plastic into construction blocks. It is the first study to analyze the use of polyethylene terephthalate (PET) as a binder in plastic-sand bricks. Unlike previous studies of plastic sand-bricks, this research tests the properties of bricks that were made using a low-cost kiln technology that was co-designed with a rural, coastal community in Kenya.  The mechanical strength, resistance to fire and water absorption properties of the bricks are tested in this study. The findings show that the bricks meet structural standards for mechanical performance, fire resistance and water absorption. It was found that 30:70 PET to sand demonstrated the best overall performance.

Keywords: recycling, PET, plastic, sustainable construction, sustainable development

Procedia PDF Downloads 110
4780 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran

Authors: M. Goodarzi, M. Mohammadi, A. Gharib

Abstract:

Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.

Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method

Procedia PDF Downloads 521
4779 Individual Physiological and Psycho-Physical Response on Predicting Thermal Comfort in Transient Environments: A Literature Review

Authors: Fatemeh Deldarabdolmaleki, Nur Dalilah Dahlan, Farzad Hejazi

Abstract:

Human individual physiological and psycho-physical responses widely affect thermal comfort and preferences. They should be carefully researched to help improve the design and comfort of indoor environments. This paper aims to explore and test the degree and importance of individual physiological and psycho-physical differences, reviewing the most preferred, neutral, and comfortable temperature in previous studies conducted across the world. Basic individual physiological differences like gender, age, BMI and etc., have been the focus of this research. There is no unique consensus in the literature to date in regard to providing a universal thermal comfort formula that meets all individual physiological and psycho-physical needs. In order to achieve a balanced, thermally comfortable indoor environment, studying and evaluating individual needs in different parts of the world could be helpful. Even though personalized comfort systems in indoor environments sound promising, they might not be easily achieved in bigger office interiors, considering the cost and current open-plan office trends.

Keywords: thermal comfort, indoor environments, occupants' physiological response, occupants psycho-physical response

Procedia PDF Downloads 59
4778 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 297
4777 Study on Beta-Ray Detection System in Water Using a MCNP Simulation

Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo

Abstract:

In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.

Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator

Procedia PDF Downloads 487
4776 Community Integration: Post-Secondary Education (PSE) and Library Programming

Authors: Leah Plocharczyk, Matthew Conner

Abstract:

This paper analyzes the relatively new trend of PSE programs which seek to provide education, vocational training, and a college experience to individuals with an intellectual and developmental disability (IDD). Specifically, the paper examines the degree of interaction between PSE programs and the libraries of their college campuses. Using ThinkCollege, a clearinghouse and advocate for PSE programs, the researchers identified 293 programs throughout the country. These were all contacted with an email survey asking them about the nature of their involvement, if any, with the academic libraries on their campus. Where indicated by the responses, the libraries of PSE programs were contacted for additional information about their programming. Responses to the survey questions were tabulated and analyzed quantitatively. Written comments were analyzed for themes which were then tabulated. This paper presents the results of this study. They show obvious preferences for library programming, such as group formal instruction, individual liaisons, embedded reference, and various instructional designs. These are discussed in terms of special education principles of mainstreaming, level of restriction, training demands and cost effectiveness. The work serves as a foundation for best practices that can advance the field.

Keywords: disability studies, instructional design, universal design for learning, assessment methodology

Procedia PDF Downloads 57
4775 Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria

Authors: Oluwatosin Samuel Adeoye

Abstract:

Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state.

Keywords: consumers, demand, energy, management, power supply, waste

Procedia PDF Downloads 323
4774 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: water hammer, hydraulic transient, pipe systems, characteristics method

Procedia PDF Downloads 123
4773 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 323
4772 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption

Authors: I. O. Nascimento, J. T. Manzi

Abstract:

The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.

Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers

Procedia PDF Downloads 247
4771 Evaluation of Shock Sensitivity of Nano-Scaled 1,3,5-Trinitro-1,3,5-Triazacyclohexane Using Small Scale Gap Test

Authors: Kang-In Lee, Woo-Jin Lee, Keun-Deuk Lee, Ju-Seung Chae

Abstract:

In this study, small scale gap test (SSGT) was performed to measure shock sensitivity of nano-scaled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) samples. The shock sensitivity of energetic materials is usually evaluated by the method of large-scale gap test (LSGT) that has a higher reliability than other methods. But LSGT has the disadvantage that it takes a high cost and time by using a large amount of explosive. In this experiment, nano-scaled RDX samples were prepared by spray crystallization in two different drying methods. In addition, 30μm RDX sample produced by precipitation crystallization and 5μm RDX sample produced by fluid energy mill process were tested to compare shock sensitivity. The study of shock sensitivity measured by small-scale gap test shows that small sized RDX particles have greater insensitivity. As a result, we infer SSGT method has higher reliability compared to the literature as measurement of shock sensitivity of energetic materials.

Keywords: nano-scaled RDX, SSGT(small scale gap test), shock sensitivity, RDX

Procedia PDF Downloads 239
4770 Immobilization Strategy of Recombinant Xylanase from Trichoderma reesei by Cross-Linked Enzyme Aggregates

Authors: S. Md. Shaarani, J. Md. Jahim, R. A. Rahman, R. Md. Illias

Abstract:

Modern developments in biotechnology have paved the way for extensive use of biocatalysis in industries. Although it offers immense potential, industrial application is usually hampered by lack of operational stability, difficulty in recovery as well as limited re-use of the enzyme. These drawbacks, however, can be overcome by immobilization. Cross-linked enzyme aggregates (CLEAs), a versatile carrier-free immobilization technique is one that is currently capturing global interest. This approach involves precipitating soluble enzyme with an appropriate precipitant and subsequent crosslinking by a crosslinking reagent. Without ineffective carriers, CLEAs offer high enzymatic activity, stability and reduced production cost. This study demonstrated successful CLEA synthesis of recombinant xylanase from Trichoderma reesei using ethanol as aggregating agent and glutaraldehyde (2% (v/v); 100 mM) as crosslinker. Effects of additives including proteic feeder such as bovine serum albumin (BSA) and poly-L-Lysine were investigated to reveal its significance in enhancing the performance of enzyme. Addition of 0.1 mg BSA/U xylanase showed considerable increment in CLEA development with approximately 50% retained activity.

Keywords: cross-linked, immobilization, recombinant, xylanase

Procedia PDF Downloads 341
4769 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 211
4768 Governance of the Waters in the Upper Iguazu Watershed: Case Study in Passaúna and Miringuava Watersheds

Authors: Matheus Fonseca Durães, Bruno da Silva Pereira, Bruna Stewart

Abstract:

The concept of Brazil’s water governance has been the topic of discussion and has undergone legal and organizational improvements due to the need to promote a more effective and sustainable relationship with natural resources and stemming from conflicts related to shortcomings in decision-making. The Waters Act has enabled Brazil to create interesting mechanisms for integrated management, but, on the other hand, it has created a challenge that involves the implementation of the principles established in this legal framework. This study aims to evaluate some challenges and opportunities for water governance in two watersheds based on data collection and analysis of concessions, the water use register, and flow data. The elements presented demonstrated, via an analysis of legally instituted criteria, that the level of commitment of water resources is high, especially to public supply, and the adoption of the reference flow constituted one of the main barriers to implementing an efficient system, demonstrating the need for a regulatory policy that considers the hydrological behavior of the watersheds. Finally, the current water management model presents challenges to be addressed to achieve the objectives proposed by the water policy, such as ensuring sustainable, rational, and integrated use of water resources.

Keywords: management, hydrology, public policies, Brazil

Procedia PDF Downloads 79
4767 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization

Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki

Abstract:

Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution

Procedia PDF Downloads 452