Search results for: video modeling procedures
1429 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 1421428 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 1331427 An Investigation of the Association between Pathological Personality Dimensions and Emotion Dysregulation among Virtual Network Users: The Mediating Role of Cyberchondria Behaviors
Authors: Mehdi Destani, Asghar Heydari
Abstract:
Objective: The present study aimed to investigate the association between pathological personality dimensions and emotion dysregulation through the mediating role of Cyberchondria behaviors among users of virtual networks. Materials and methods: A descriptive–correlational research method was used in this study, and the statistical population consisted of all people active on social network sites in 2020. The sample size was 300 people who were selected through Convenience Sampling. Data collection was carried out in a survey method using online questionnaires, including the "Difficulties in Emotion Regulation Scale" (DERS), Personality Inventory for DSM-5 Brief Form (PID-5-BF), and Cyberchondria Severity Scale Brief Form (CSS-12). Data analysis was conducted using Pearson's Correlation Coefficient and Structural Equation Modeling (SEM). Findings: Findings suggested that pathological personality dimensions and Cyberchondria behaviors have a positive and significant association with emotion dysregulation (p<0.001). The presented model had a good fit with the data. The variable “pathological personality dimensions” with an overall effect (p<0.001, β=0.658), a direct effect (p<0.001, β=0.528), and an indirect mediating effect through Cyberchondria Behaviors (p<.001), β=0.130), accounted for emotion dysregulation among virtual network users. Conclusion: The research findings showed a necessity to pay attention to the pathological personality dimensions as a determining variable and Cyberchondria behaviors as a mediator in the vulnerability of users of social network sites to emotion dysregulation.Keywords: cyberchondria, emotion dysregulation, pathological personality dimensions, social networks
Procedia PDF Downloads 1041426 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1741425 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3191424 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models
Authors: Yungtai Lo
Abstract:
Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve
Procedia PDF Downloads 3491423 Reflections on the Trajectory of an Online Literature Cafe through Its Music and Arts Activities
Authors: Mariko Hara, Mari Aoki, Takako Ito, Masao Sugita
Abstract:
Social distancing measures due to the COVID-19 crisis had a severe impact on music and art practices based in community settings. They had to re-think how to connect with their dispersed community using online tools. As the social distancing continues, there is an urgent need to investigate the possibilities of online community music and art practices. Are they sustainable actions that can have positive impacts on the community and the quality of lives of people over time? The Online Lindgren Café (hereafter ‘OLC’) is a monthly online literature event which started in June 2020. In the OLC, up to 14 members meet online to discuss the works of Astrid Lindgren and similar authors. Members come from various places in Japan and Norway, with a variety of expertise from music therapy, music education, psychotherapy, music sociology, storytelling, and theatre, and their family members join them. In these meetings, music and arts activities emerged in response to interests among the members. The resources and experiences of the members helped to develop these activities further. This paper first introduces one of the music and art activities in one specific event, a collaborative picture book-making with music, which was initiated and led by the second author. The third author chose the music, and the activity itself was recorded. This is followed by the description of a reflecting event, where the recording of the collaborative picture book-making activity was shared to facilitate further creations (drawings, haiku, and fabric weaving) as well as group reflections on the trajectories of the Online Lindgren Café. Finally, we will discuss the preliminary findings using the data collected at the reflecting event. Key findings suggest that the resource-driven approach of the OLC leveled the relationships among the intergenerational, multi-cultural, and interdisciplinary members. This enabled the members to set aside their professional and/or predominant identities, which allowed them to discover their own and others’ resources. The relaxed, unstructured, and liminal phenomenon at OLC can be regarded as a form of communitas, where members gain a sense of liberation and belonging in a different way from in-person communications. Participation from one’s home, as well as a video conferencing function that allowed the members to position themselves among the other participants in equal-sized windows, seems to have enabled members to feel safe to express themselves openly at the same time feel a sense of belonging. Furthermore, in the OLC, music and arts activities acted to inclusively connect and re-connect dispersed, intergenerational members with each other. For instance, in a music and drawing activity, music acted as a means for each member to engage in their own ‘drawing space’ while still feeling connected with the others. The positive experiences from these activities inspired the members to use similar approaches outside of the OLC. The finding suggests that, because of its resource-driven approach supported by the music and arts activities, the OLC could be developed further as a permeable and sustainable action even after any current social distancing measures are lifted.Keywords: communitas, COVID-19, musical affordances, online community of practices, resource-driven approach
Procedia PDF Downloads 1341422 An Approach for Association Rules Ranking
Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni
Abstract:
Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking
Procedia PDF Downloads 3221421 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy
Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni
Abstract:
This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.Keywords: deep seated gravitational slope deformation, Italy, landslide, numerical modeling
Procedia PDF Downloads 3651420 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4551419 Blending Synchronous with Asynchronous Learning Tools: Students’ Experiences and Preferences for Online Learning Environment in a Resource-Constrained Higher Education Situations in Uganda
Authors: Stephen Kyakulumbye, Vivian Kobusingye
Abstract:
Generally, World over, COVID-19 has had adverse effects on all sectors but with more debilitating effects on the education sector. After reactive lockdowns, education institutions that could continue teaching and learning had to go a distance mediated by digital technological tools. In Uganda, the Ministry of Education thereby issued COVID-19 Online Distance E-learning (ODeL) emergent guidelines. Despite such guidelines, academic institutions in Uganda and similar developing contexts with academically constrained resource environments were caught off-guard and ill-prepared to transform from face-to-face learning to online distance learning mode. Most academic institutions that migrated spontaneously did so with no deliberate tools, systems, strategies, or software to cause active, meaningful, and engaging learning for students. By experience, most of these academic institutions shifted to Zoom and WhatsApp and instead conducted online teaching in real-time than blended synchronous and asynchronous tools. This paper provides students’ experiences while blending synchronous and asynchronous content-creating and learning tools within a technological resource-constrained environment to navigate in such a challenging Uganda context. These conceptual case-based findings, using experience from Uganda Christian University (UCU), point at the design of learning activities with two certain characteristics, the enhancement of synchronous learning technologies with asynchronous ones to mitigate the challenge of system breakdown, passive learning to active learning, and enhances the types of presence (social, cognitive and facilitatory). The paper, both empirical and experiential in nature, uses online experiences from third-year students in Bachelor of Business Administration student lectured using asynchronous text, audio, and video created with Open Broadcaster Studio software and compressed with Handbrake, all open-source software to mitigate disk space and bandwidth usage challenges. The synchronous online engagements with students were a blend of zoom or BigBlueButton, to ensure that students had an alternative just in case one failed due to excessive real-time traffic. Generally, students report that compared to their previous face-to-face lectures, the pre-recorded lectures via Youtube provided them an opportunity to reflect on content in a self-paced manner, which later on enabled them to engage actively during the live zoom and/or BigBlueButton real-time discussions and presentations. The major recommendation is that lecturers and teachers in a resource-constrained environment with limited digital resources like the internet and digital devices should harness this approach to offer students access to learning content in a self-paced manner and thereby enabling reflective active learning through reflective and high-order thinking.Keywords: synchronous learning, asynchronous learning, active learning, reflective learning, resource-constrained environment
Procedia PDF Downloads 1381418 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles
Authors: Kbab H, Hamitouche T
Abstract:
In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR
Procedia PDF Downloads 1331417 Modeling the Human Harbor: An Equity Project in New York City, New York USA
Authors: Lauren B. Birney
Abstract:
The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.Keywords: computer science, data science, equity, diversity and inclusion, STEM education
Procedia PDF Downloads 581416 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 3011415 Problems Confronting the Teaching of Sex Education in Some Selected Secondary Schools in the Akoko Region of Ondo State, Nigeria
Authors: Jimoh Abiodun Alaba
Abstract:
Context: In many traditional African societies, sex education is often considered a taboo topic. However, the importance of sex education is becoming increasingly evident. This study aims to investigate the challenges faced in teaching sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Research Aim: The aim of this study is to identify and examine the problems confronting the teaching of sex education in selected secondary schools in the Akoko region of Ondo state, Nigeria. Methodology: The study utilized a multi-stage sampling method. The first stage involved a purposive selection of ten (10) secondary schools in the Akoko region of Ondo State, while the second stage was a random selection of twenty (20) students, each in the selected secondary schools of the study area. This makes a total of two (200) hundred students that were considered for the survey. Descriptive analysis using percentages was employed to analyze the collected data. Factor analysis was also used to identify the most significant problems. Findings: The study revealed that sex education has been neglected in the sampled secondary schools due to traditional African beliefs that do not support the teaching and learning of this subject. Furthermore, there was evidence to suggest that parents also displayed reluctance towards the teaching of sex education, fearing that it might expose students to inappropriate behavior. Consequently, students were deprived of this essential aspect of education necessary for self-awareness and development. Theoretical Importance: This study contributes to the understanding of the challenges faced in teaching sex education in traditional African societies, specifically in the selected secondary schools in the Akoko region of Ondo state, Nigeria. Data Collection: Data were collected through the administration of 200 questionnaires in ten selected secondary schools. Additionally, information was gathered from federal, state, and local government authorities. Analysis Procedures: The collected data were analyzed using descriptive analysis, employing percentage calculations for better interpretation. Furthermore, factor analysis was conducted to isolate the most significant problems identified. Conclusion: The study concludes that sex education in the sampled secondary schools in the Akoko region of Ondo state, Nigeria, has suffered neglect due to traditional African beliefs and parental concerns. Consequently, students are denied an important aspect of education necessary for their self-awareness and development. Recommendations are made to change the negative perception of sex education, enrich the curriculum, and employ qualified personnel for its teaching. Additionally, it is suggested that sex education should be integrated with moral instruction.Keywords: African traditional belief, sex, sex education, sexual misdemeanor, morality
Procedia PDF Downloads 851414 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds
Authors: Qiming Wang
Abstract:
Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds
Procedia PDF Downloads 1871413 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3691412 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 441411 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 871410 Strategic Public Procurement: A Lever for Social Entrepreneurship and Innovation
Authors: B. Orser, A. Riding, Y. Li
Abstract:
To inform government about how gender gaps in SME ( small and medium-sized enterprise) contracting might be redressed, the research question was: What are the key obstacles to, and response strategies for, increasing the engagement of women business owners among SME suppliers to the government of Canada? Thirty-five interviews with senior policymakers, supplier diversity organization executives, and expert witnesses to the Canadian House of Commons, Standing Committee on Government Operations and Estimates. Qualitative data were conducted and analysed using N’Vivo 11 software. High order response categories included: (a) SME risk mitigation strategies, (b) SME procurement program design, and (c) performance measures. Primary obstacles cited were government red tape and long and complicated requests for proposals (RFPs). The majority of 'common' complaints occur when SMEs have questions about the federal procurement process. Witness responses included use of outcome-based rather than prescriptive procurement practices, more agile procurement, simplified RFPs, making payment within 30 days a procurement priority. Risk mitigation strategies included provision of procurement officers to assess risks and opportunities for businesses and development of more agile procurement procedures and processes. Recommendations to enhance program design included: improved definitional consistency of qualifiers and selection criteria, better co-ordination across agencies; clarification about how SME suppliers benefit from federal contracting; goal setting; specification of categories that are most suitable for women-owned businesses; and, increasing primary contractor awareness about the importance of subcontract relationships. Recommendations also included third-party certification of eligible firms and the need to enhance SMEs’ financial literacy to reduce financial errors. Finally, there remains the need for clear and consistent pre-program statistics to establish baselines (by sector, issuing department) performance measures, targets based on percentage of contracts granted, value of contract, percentage of target employee (women, indigenous), and community benefits including hiring local employees. The study advances strategies to enhance federal procurement programs to facilitate socio-economic policy objectives.Keywords: procurement, small business, policy, women
Procedia PDF Downloads 1131409 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia PDF Downloads 1481408 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components
Authors: M. Ekiert, T. Uhl, A. Mlyniec
Abstract:
Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.Keywords: decomposition, molecular dynamics, soft tissue, tendons
Procedia PDF Downloads 2101407 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector
Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy
Abstract:
In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.Keywords: four quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency (PRF), Atmega 32 microcontrollers
Procedia PDF Downloads 3901406 mHealth-based Diabetes Prevention Program among Mothers with Abdominal Obesity: A Randomized Controlled Trial
Authors: Jia Guo, Qinyuan Huang, Qinyi Zhong, Yanjing Zeng, Yimeng Li, James Wiley, Kin Cheung, Jyu-Lin Chen
Abstract:
Context: Mothers with abdominal obesity, particularly in China, face challenges in managing their health due to family responsibilities. Existing diabetes prevention programs do not cater specifically to this demographic. Research Aim: To assess the feasibility, acceptability, and efficacy of an mHealth-based diabetes prevention program tailored for Chinese mothers with abdominal obesity in reducing weight-related variables and diabetes risk. Methodology: A randomized controlled trial was conducted in Changsha, China, where the mHealth group received personalized modules and health messages, while the control group received general health education. Data were collected at baseline, 3 months, and 6 months. Findings: The mHealth intervention significantly improved waist circumference, modifiable diabetes risk scores, daily steps, self-efficacy for physical activity, social support for physical activity, and physical health satisfaction compared to the control group. However, no differences were found in BMI and certain other variables. Theoretical Importance: The study demonstrates the feasibility and efficacy of a tailored mHealth intervention for Chinese mothers with abdominal obesity, emphasizing the potential for such programs to improve health outcomes in this population. Data Collection: Data on various variables including weight-related measures, diabetes risk scores, behavioral and psychological factors were collected at baseline, 3 months, and 6 months from participants in the mHealth and control groups. Analysis Procedures: Generalized estimating equations were used to analyze the data collected from the mHealth and control groups at different time points during the study period. Question Addressed: The study addressed the effectiveness of an mHealth-based diabetes prevention program tailored for Chinese mothers with abdominal obesity in improving various health outcomes compared to traditional general health education approaches. Conclusion: The tailored mHealth intervention proved to be feasible and effective in improving weight-related variables, physical activity, and physical health satisfaction among Chinese mothers with abdominal obesity, highlighting its potential for delivering diabetes prevention programs to this population.Keywords: type 2 diabetes, mHealth, obesity, prevention, mothers
Procedia PDF Downloads 571405 Normalized Enterprises Architectures: Portugal's Public Procurement System Application
Authors: Tiago Sampaio, André Vasconcelos, Bruno Fragoso
Abstract:
The Normalized Systems Theory, which is designed to be applied to software architectures, provides a set of theorems, elements and rules, with the purpose of enabling evolution in Information Systems, as well as ensuring that they are ready for change. In order to make that possible, this work’s solution is to apply the Normalized Systems Theory to the domain of enterprise architectures, using Archimate. This application is achieved through the adaptation of the elements of this theory, making them artifacts of the modeling language. The theorems are applied through the identification of the viewpoints to be used in the architectures, as well as the transformation of the theory’s encapsulation rules into architectural rules. This way, it is possible to create normalized enterprise architectures, thus fulfilling the needs and requirements of the business. This solution was demonstrated using the Portuguese Public Procurement System. The Portuguese government aims to make this system as fair as possible, allowing every organization to have the same business opportunities. The aim is for every economic operator to have access to all public tenders, which are published in any of the 6 existing platforms, independently of where they are registered. In order to make this possible, we applied our solution to the construction of two different architectures, which are able of fulfilling the requirements of the Portuguese government. One of those architectures, TO-BE A, has a Message Broker that performs the communication between the platforms. The other, TO-BE B, represents the scenario in which the platforms communicate with each other directly. Apart from these 2 architectures, we also represent the AS-IS architecture that demonstrates the current behavior of the Public Procurement Systems. Our evaluation is based on a comparison between the AS-IS and the TO-BE architectures, regarding the fulfillment of the rules and theorems of the Normalized Systems Theory and some quality metrics.Keywords: archimate, architecture, broker, enterprise, evolvable systems, interoperability, normalized architectures, normalized systems, normalized systems theory, platforms
Procedia PDF Downloads 3571404 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2671403 The Analysis of Swales Model (Cars Model) in the UMT Final Year Engineering Students
Authors: Kais Amir Kadhim
Abstract:
Context: The study focuses on the rhetorical structure of chapters in engineering final year projects, specifically the Introduction chapter, written by UMT (University of Marine Technology) engineering students. Existing research has explored the use of genre-based approaches to analyze the writing of final year projects in various disciplines. Research Aim: The aim of this study is to investigate the rhetorical structure of Introduction chapters in engineering final year projects by UMT students. The study aims to identify the frequency of communicative moves and their constituent steps within the Introduction chapters, as well as understand how students justify their research projects. Methodology: The research design will utilize a mixed method approach, combining both quantitative and qualitative methods. Forty Introduction chapters from two different fields in UMT engineering undergraduate programs will be selected for analysis. Findings: The study intends to identify the types of moves present in the Introduction chapters of engineering final year projects by UMT students. Additionally, it aims to determine if these moves and steps are obligatory, conventional, or optional. Theoretical Importance: The study draws upon Bunton's modified CARS (Creating a Research Space) model, which is a conceptual framework used for analyzing the introduction sections of theses. By applying this model, the study contributes to the understanding of the rhetorical structure of Introduction chapters in engineering final year projects. Data Collection: The study will collect data from forty Introduction chapters of engineering final year projects written by UMT engineering students. These chapters will be selected from two different fields within UMT's engineering undergraduate programs. Analysis Procedures: The analysis will involve identifying and categorizing the communicative moves and their constituent steps within the Introduction chapters. The study will utilize both quantitative and qualitative analysis methods to examine the frequency and nature of these moves. Question Addressed: The study aims to address the question of how UMT engineering students structure and justify their research projects within the Introduction chapters of their final year projects. Conclusion: The study aims to contribute to the knowledge of rhetorical structure in engineering final year projects by investigating the Introduction chapters written by UMT engineering students. By using a mixed method research design and applying the modified CARS model, the study intends to identify the types of moves and steps employed by students and explore their justifications for their research projects. The findings have the potential to enhance the understanding of effective academic writing in engineering disciplines.Keywords: cohesive markers, learning, meaning, students
Procedia PDF Downloads 751402 Study of the Persian Gulf’s and Oman Sea’s Numerical Tidal Currents
Authors: Fatemeh Sadat Sharifi
Abstract:
In this research, a barotropic model was employed to consider the tidal studies in the Persian Gulf and Oman Sea, where the only sufficient force was the tidal force. To do that, a finite-difference, free-surface model called Regional Ocean Modeling System (ROMS), was employed on the data over the Persian Gulf and Oman Sea. To analyze flow patterns of the region, the results of limited size model of The Finite Volume Community Ocean Model (FVCOM) were appropriated. The two points were determined since both are one of the most critical water body in case of the economy, biology, fishery, Shipping, navigation, and petroleum extraction. The OSU Tidal Prediction Software (OTPS) tide and observation data validated the modeled result. Next, tidal elevation and speed, and tidal analysis were interpreted. Preliminary results determine a significant accuracy in the tidal height compared with observation and OTPS data, declaring that tidal currents are highest in Hormuz Strait and the narrow and shallow region between Iranian coasts and Islands. Furthermore, tidal analysis clarifies that the M_2 component has the most significant value. Finally, the Persian Gulf tidal currents are divided into two branches: the first branch converts from south to Qatar and via United Arab Emirate rotates to Hormuz Strait. The secondary branch, in north and west, extends up to the highest point in the Persian Gulf and in the head of Gulf turns counterclockwise.Keywords: numerical model, barotropic tide, tidal currents, OSU tidal prediction software, OTPS
Procedia PDF Downloads 1311401 Fear of Falling and Physical Activities: A Comparison Between Rural and Urban Elderly People
Authors: Farhad Azadi, Mohammad Mahdi Mohammadi, Mohsen Vahedi, Zahra Mahdiin
Abstract:
Context: The aging population is growing all over the world and maintaining physical activity is essential for healthy aging. However, fear of falling is a major obstacle to physical activity among the elderly. The aim of this study is to investigate and compare the relationship between fear of falling and physical activity in Iranian urban and rural elderly. Research Aim: The main aim of this cross-sectional analytical study is to investigate and compare the relationship between fear of falling and physical activity in Iranian rural and urban elderly. Methodology: The study used simple non-probability sampling to select 350 participants aged 60 years and older from rural and urban areas of Konarak, Sistan and Baluchistan provinces in Iran. The Persian versions of the Falls Efficacy Scale - International, Rapid Physical Activity Assessment, Activities of Daily Living, and Instrumental Activities of Daily Living questionnaires were used to assess fear of falling and physical activity. The data were analyzed using Pearson correlation tests. Findings: The study found a statistically significant negative correlation between fear of falling and physical activity, as measured by ADL, IADL, and RAPA1(aerobic ), in all elderly and rural and urban elderly (p<0.001). Fear of falling was higher in rural areas, while physical activity levels measured by ADL and RAPA1 were higher in urban areas. No significant difference was found between the two groups in IADL and RAPA2 (strength and flexibility) scores. Theoretical Importance: This study highlights the importance of considering the fear of falling as a significant obstacle to proper physical activity, especially among the elderly living in rural areas. Furthermore, the study provides insight into the difference between rural and urban elderly people in terms of fear of falling and physical activity. Data Collection and Analysis Procedures: Data was collected through questionnaires and analyzed using Pearson correlation tests. Questions Addressed: The study attempted to answer the following questions: Is there a relationship between fear of falling and physical activity in Iranian urban and rural elderly people? Is there a difference in fear of falling and physical activity between rural and urban elderly? Conclusion: Fear of falling is a major obstacle to physical activity among the elderly, especially in rural areas. The study found a significant negative correlation between fear of falling and physical activity in all elderly and rural and urban elderly. In addition, urban and rural elderly have differences in aerobic activity levels, but they do not differ in terms of flexibility and strength. Therefore, proper interventions are required to ensure that the elderly can maintain physical activity, especially in rural and deprived areas.Keywords: aged, fear of falling, physical activity, urban population, rural population
Procedia PDF Downloads 701400 An Approach For Evolving a Relaible Low Power Ultra Wide Band Transmitter with Capacitve Sensing
Abstract:
This work aims for a tunable capacitor as a sensor which can vary the control voltage of a voltage control oscillator in a ultra wide band (UWB) transmitter. In this paper power consumption is concentrated. The reason for choosing a capacitive sensing is it give slow temperature drift, high sensitivity and robustness. Previous works report a resistive sensing in a voltage control oscillator (VCO) not aiming at power consumption. But this work aims for power consumption of a capacitive sensing in ultra wide band transmitter. The ultra wide band transmitter to be used is a direct modulation of pulses. The VCO which is the heart of pulse generator of UWB transmitter works on the principle of voltage to frequency conversion. The VCO has and odd number of inverter stages which works on the control voltage input this input is now from a variable capacitor and the buffer stages is reduced from the previous work to maintain the oscillating frequency. The VCO is also aimed to consume low power. Then the concentration in choosing a variable capacitor is aimed. A compact model of a capacitor with the transient characteristics is to be designed with a movable dielectric and multi metal membranes. Previous modeling of the capacitor transient characteristics is with a movable membrane and a fixed membrane. This work aims at a membrane with a wide tuning suitable for ultra wide band transmitter.This is used in this work because a capacitive in a ultra wide transmitter need to be tuned in such a way that all satisfies FCC regulations.Keywords: capacitive sensing, ultra wide band transmitter, voltage control oscillator, FCC regulation
Procedia PDF Downloads 392