Search results for: plasma glucose level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14092

Search results for: plasma glucose level

13612 Response Surface Methodology for the Optimization of Sugar Extraction from Phoenix dactylifera L.

Authors: Lila Boulekbache-Makhlouf, Kahina Djaoud, Myriam Tazarourte, Samir Hadjal, Khodir Madani

Abstract:

In Algeria, important quantities of secondary date variety (Phoenix dactylifera L.) are generated in each campaign; their chemical composition is similar to that of commercial dates. The present work aims to valorize this common date variety (Degla-Beida) which is often poorly exploited. In this context, we tried to prepare syrup from the secondary date variety and to evaluate the effect of conventional extraction (CE) or water bath extraction (WBE) and alternative extraction (microwaves assisted extraction (MAE), and ultrasounds assisted extraction (UAE)) on its total sugar content (TSC), using response surface methodology (RSM). Then, the analysis of individual sugars was performed by high-performance liquid chromatography (HPLC). Maximum predicted TSC recoveries under the optimized conditions for MAE, UAE and CE were 233.248 ± 3.594 g/l, 202.889 ± 5.797 g/l, and 233.535 ± 5.412 g/l, respectively, which were close to the experimental values: 233.796 ± 1.898 g/l; 202.037 ± 3.401 g/l and 234.380 ± 2.425 g/l. HPLC analysis revealed high similarity in the sugar composition of date juices obtained by MAE (60.11% sucrose, 16.64% glucose and 23.25% fructose) and CE (50.78% sucrose, 20.67% glucose and 28.55% fructose), although a large difference was detected for that obtained by UAE (0.00% sucrose, 46.94% glucose and 53.06% fructose). Microwave-assisted extraction was the best method for the preparation of date syrup with an optimal recovery of total sugar content. However, ultrasound-assisted extraction was the best one for the preparation of date syrup with high content of reducing sugars.

Keywords: dates, extraction, RSM, sugars, syrup

Procedia PDF Downloads 159
13611 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: metallurgical grade silicon, solar grade silicon, impurity, refining, plasma

Procedia PDF Downloads 497
13610 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 314
13609 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 419
13608 Paeonol Prevents Diabetic Nephropathy Progression in STZ-Induced Diabetic Rats

Authors: Xuan Li, Xiaobing Cui, Nan Meng, Shuangshuang Guo, Lingling Wang

Abstract:

Objective: To investigate the influence of Paeonol on diabetic nephropathy progression in streptozocin (STZ) -induced diabetic rats. Method Male Wistar rats were injected STZ 30mg.kg-1 combined with Freund's complete adjuvant (CFA) 0.1mL/rat once a week for three weeks. The diabetic rats were treated with Paenol for 13 weeks. At the end of the experiments, the rats were anesthetized. Serum and the kidney were collected. Serum superoxide dismutase (SOD) activity, malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (Cr) and total cholesterol (Chol) level were detected; kidney paraffin sections were prepared and HE and PAS staining sections were used to evaluate the pathology changes of the kidney. Immunohistochemical analysis was used to observe the expression of VEGF and fibernectin expression in the kidney. Result The blood glucose level remained over 16mmol. L-1 for 13 weeks and the ECM accumulated in the diabetic kidney apparently. Paeonol treatment increased serum SOD activity, however, MDA, BUN, Cr, and Chol level was decreased by paeonol treatment. VEGF and fibernectin expression were increased significantly in the DN rats and paeonol treatment ameliorated the overexpression. Conclusion: paeonol prevented the progression of DN.

Keywords: paeonol, STZ, diabetic nephropathy, fibernectin expression, kidney paraffin sections

Procedia PDF Downloads 463
13607 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 267
13606 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 223
13605 The Beneficial Effects of Inhibition of Hepatic Adaptor Protein Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 on Glucose and Cholesterol Homeostasis

Authors: Xi Chen, King-Yip Cheng

Abstract:

Hypercholesterolemia, characterized by high low-density lipoprotein cholesterol (LDL-C), raises cardiovascular events in patients with type 2 diabetes (T2D). Although several drugs, such as statin and PCSK9 inhibitors, are available for the treatment of hypercholesterolemia, they exert detrimental effects on glucose metabolism and hence increase the risk of T2D. On the other hand, the drugs used to treat T2D have minimal effect on improving the lipid profile. Therefore, there is an urgent need to develop treatments that can simultaneously improve glucose and lipid homeostasis. Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2) causes insulin resistance in the liver and skeletal muscle via inhibiting insulin and adiponectin actions in animal models. Single-nucleotide polymorphisms in the APPL2 gene were associated with LDL-C, non-alcoholic fatty liver disease, and coronary artery disease in humans. The aim of this project is to investigate whether APPL2 antisense oligonucleotide (ASO) can alleviate dietary-induced T2D and hypercholesterolemia. High-fat diet (HFD) was used to induce obesity and insulin resistance in mice. GalNAc-conjugated APPL2 ASO (GalNAc-APPL2-ASO) was used to silence hepatic APPL2 expression in C57/BL6J mice selectively. Glucose, lipid, and energy metabolism were monitored. Immunoblotting and quantitative PCR analysis showed that GalNAc-APPL2-ASO treatment selectively reduced APPL2 expression in the liver instead of other tissues, like adipose tissues, kidneys, muscle, and heart. The glucose tolerance test and insulin sensitivity test revealed that GalNAc-APPL2-ASO improved glucose tolerance and insulin sensitivity progressively. Blood chemistry analysis revealed that the mice treated with GalNAc-APPL2-ASO had significantly lower circulating levels of total cholesterol and LDL cholesterol. However, there was no difference in circulating levels of high-density lipoprotein (HDL) cholesterol, triglyceride, and free fatty acid between the mice treated with GalNac-APPL2-ASO and GalNAc-Control-ASO. No obvious effect on food intake, body weight, and liver injury markers after GalNAc-APPL2-ASO treatment was found, supporting its tolerability and safety. We showed that selectively silencing hepatic APPL2 alleviated insulin resistance and hypercholesterolemia and improved energy metabolism in the dietary-induced obese mouse model, indicating APPL2 as a therapeutic target for metabolic diseases.

Keywords: APPL2, antisense oligonucleotide, hypercholesterolemia, type 2 diabetes

Procedia PDF Downloads 68
13604 Metformin and Its Combination with Sodium Hydrosulfide Influences Plasma Galectin-3 and CSE/H₂S System in Diabetic Rat's Heart

Authors: I. V. Palamarchuk, N. V. Zaichko

Abstract:

Background and Aims: Galectin-3 is a marker of subclinical cardiac injury and is elevated in individuals with type 2 diabetes mellitus; while hydrogen sulfide (H₂S), metabolite of sulfur-containing amino acids, is considered having antifibrogenic effects. This study was designed to investigate whether metformin and its combination with NaHS can influence plasma galectin-3 and cystathionine-γ-lyase/hydrogen sulfide (CSE/H₂S) system in diabetic rat’s heart. Methods: 32 healthy male rats (180-250 g) were divided into 4 groups. To induct diabetes, rats (group 2-4) were injected with streptozotocin (STZ, 40 mg/kg/i.p., 0.1 M citrate buffer (pH 4.5). Rats from 3d (STZ+Metf) and 4th (STZ+Metf+NaHS) groups were given metformin (500 mg/kg/day) orally, and rats from 4th (STZ+Metf+NaHS) group were injected sodium hydrosulfide (NaHS, 3 mg/kg/i.p.) once per day starting from 3 to 28 day after streptozotocin injection. Rats of first group (control) were administered the equivalent volumes of 0.9% NaCl. Plasma galectin-3 was measured by ELISA. Rats’ hearts were sampled for determination of H2S by reaction with N,N-Dimethyl-p-phenylenediamine. Determination of CSE gene expression was performed in real time using PCR in the presence of SYBR Green I, using DT-Light detecting amplifier ('DNA-technology', Russia). Results: Induction of streptozotocin diabetes (STZ-diabetes, group 2) was followed by low myocardial H2S concentration and CSE expression (by 35%, p < 0.05 and 60.5%, p < 0.001 respectively, than that in controls), while plasma galectin-3 in this group was significantly higher than in controls (by 3.8 times, p < 0.05). Administration of metformin (group 3) resulted in significantly higher H₂S concentration (by 28.5%, p < 0.05), whereas CSE expression was only by 6% more than that in STZ-diabetes, as well as plasma galectin-3 was only by 14.8% lower in comparison with untreated diabetic rats. The inhibition of H₂S generation and CSE activity by diabetes was greatly attenuated in STZ+Metf+NaHS group. The combination of metformin with NaHS significantly stimulated H₂S production (by 48%, p < 0.05 and 15%, p < 0.05 more than STZ-diabetes and STZ+Metf respectively) and CSE gene expression (by 64.8%, p < 0.05 compared to STZ-diabetes and by 55.4%,p < 0.05 compared to STZ+Metf). Besides, plasma galectin-3 in rats receiving metformin and NaHS was significantly lower by 42%, p < 0.05 and 32.5%, p < 0.05 compared to STZ-diabetes and STZ+Metf groups respectively. Conclusions: To summarize, dysfunction of CSE/H2S system and galectin-3 stimulation was found in streptozotocin-induced diabetic rats. Metformin and its combination with exogenous H2S effectively prevented the development of metabolic changes induced by diabetes. These findings suggest that CSE/H₂S system can be integrated into pathogenesis of diabetic complications through modulation of pro-inflammatory and pro-fibrogenic mediator galectin-3.

Keywords: cystathionine-γ-lyase, diabetic heart, galectin-3, hydrogen sulfide, metformin, sodium hydrosulfide

Procedia PDF Downloads 227
13603 High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings

Authors: Folorunso Omoniyi, Peter Olubambi, Rotimi Sadiku

Abstract:

Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides.

Keywords: high-temperature oxidation, powder metallurgy, spark plasma sintering, thermal barrier coating

Procedia PDF Downloads 508
13602 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 158
13601 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 67
13600 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam

Authors: Abid Ali Abid

Abstract:

One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.

Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation

Procedia PDF Downloads 206
13599 Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity

Authors: Somaiya Mateen, Shagufta Moin, Mohammad Owais, Abdul Khan, Atif Zafar

Abstract:

In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity.

Keywords: rheumatoid arthritis, reactive oxygen species, pro-inflammatory cytokines, anti-inflammatory cytokines

Procedia PDF Downloads 318
13598 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry

Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes

Abstract:

The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.

Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium

Procedia PDF Downloads 168
13597 Anti-diabetic Potential of Olive (Olea Europaea) Leaves Extract: In Vitro and in Vivo Evaluation

Authors: Sobhy El-Sohaimy, Abduvali Toshev, Hanem Mansour

Abstract:

(1) Objective: The main objective of the current study was to evaluate in an In Vitro and In Vivo, the potential activity of olive leaves extract (OLE) in the treatment and/or preventing the diabetes mellitus type II and related implications; (2) Methodology: Five groups of male rats were used in the current study: group (1)- negative control (normal); group (2)- positive control, streptozotocin (STZ) induced rats; group (3)-diabetic rats treated with metformin (200 mg/kg) plus OLE (200 mg/kg); group 4- diabetic rats treated with metformin (200 mg/kg); group 5- diabetic rats treated with OLE (200 mg/kg). A four-week regime of oral treatment was administered once daily; (3) Results: Diabetic rats treated with metformin + OLE clearly showed normal blood glucose level (121.67 ± 5.49 mg/dl), and glycated hemoglobin (HbA1c) (3.70 ± 0.10%). The combination of metformin + OLE obviously showed a superior improvement in the lipid profile (TG, TC, HDL and LDL) compared to both metformin and OLE individually. The histological examination revealed that the combination of metformin + Olive leaves extract successfully repaired of the liver, kidneys, and pancreatic tissues in diabetic rats to be near to the normal status; (4) Conclusion: Finally, it can be concluded that, the combination of metformin and OLE exhibited a superior improvement than metformin and OLE individually which emphasized the promising adjuvant role of the OLE in the treatment protocol of diabetes mellitus type II.

Keywords: olive (olea europaea) leaves extracts, hypoglycemic agents, cytotoxicity, nitic oxide scavenging activity, α-glucose oxidase inhibitor

Procedia PDF Downloads 76
13596 Microstructures and Mechanical Property of ti6al4v - a Comparison between Selective Laser Melting, Electron Beam Melting and Spark Plasma Sintering

Authors: Javad Karimi, Prashanth Konda Gokuldoss

Abstract:

Microstructural inhomogeneity in additively manufactured materials affects the material properties. The present study aims in minimizing such microstructural inhomogeneity in Ti6Al4V alloy fabricated using selective laser melting (SLM) from the gas atomized powder. A detailed and systematic study of the effect of remelting on the microstructure and mechanical properties of Ti6Al4V manufactured by SLM was compared with electron beam melting and spark plasma sintering.

Keywords: additive manufacturing, selective laser melting, Ti6Al4V, microstructure

Procedia PDF Downloads 168
13595 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 71
13594 Quality of Chilled Indigenous Ram Semen Using Multi-Species Skim Milk Based Extenders

Authors: Asaduzzaman Rimon, Pankaj Kumar Jha, Abdullah Al Mansur, Mohammad Mofizul Islam, Nasrin Sultana Juyena, Farida Yeasmin Bari

Abstract:

This study was conducted to determine the effects of multi-species skim milk based extenders on sperm quality at 5ºC with the advancement of preservation time. Altogether forty ejaculates, 8 ejaculates for each of the 5 home-made semen extenders: cow skim milk (CSM), goat skim milk (GSM), sheep skim milk (SSM), buffalo skim milk (BSM) and commercial dried skim milk (CDSM) were examined for motility, plasma membrane integrity and normal morphology % of sperm at 0, 24, 48, 72, 96 and 120 hours, respectively. Sperm motility was significantly decreased (P < 0.05) with the increase of preservation time. There were no significant difference in motility % among CSM (84.0±1.4, 82.3±2.1), GSM (84.5±1.0, 82.5±0.6) and CDSM (85.0±80.3±1.3) extenders at 0 and 24 hours, respectively. However, the motility in GSM extender was significantly higher than BSM, SSM and CDSM extender at 48, 72, 96 and 120 hours. The plasma membrane integrity % at 0 hour had no significant difference among the extenders. But, the plasma membrane integrity % in GSM (84.3±0.9, 81.8±1.3, 78.0±2.2, 74.8±0.5, 72.0±1.4) and CSM (82.8±0.5, 80.8±1.0, 78.0±1.4, 73.5±1.7, 70.3±0.5) extenders were significantly higher than BSM (81.0±1.4, 76.3±2.5, 72.5±1.7, 63.8±2.5, 54.0±4.6), SSM (78.5±1.5, 75.0±1.6, 71.5±2.4, 64.3±1.7, 56.5±2.4) and CDSM extenders (78.3±2.4, 75.8±3.9, 72.5±3.3, 64.8±1.0, 60.5±3.3) at 24, 48, 72, 96 and 120 hours, respectively. The sperm morphology % had no significant difference at 0 hour among the extenders but were significantly higher in GSM (83.0±0.8, 81.3±1.5, 79.3±1.3, 73.0±2.2, 70.3±1.3) and CSM (81.5±1.7, 79.3±1.5, 75.8±1.5, 70.3±1.3, 66.3±1.5) than BSM (79.0±1.2, 75.0±1.4, 69.5±1.7, 64.5±3.1, 56.8±2.2), SSM (79.8±1.3, 76.8±2.1, 71.3±3.0, 66.0±2.7, 60.3±4.5) and CDSM (80.0±1.6, 77.0±2.2, 72.0±2.5, 66.3±2.5, 62.0±4.0) extenders at 24, 48, 72, 96 and 120 hours, respectively. The motility, plasma membrane integrity and normal morphology % of sperm had shown no significant difference between GSM and CSM but were found to be higher in GSM extenders. In the end, we concluded from the above study that the goat milk based extenders (GSM) had optimum sperm preserving quality. However, further studies are required to validate followed by fertility rate.

Keywords: chilled semen, indigenous ram, multi-species skim milk based extenders, preservation

Procedia PDF Downloads 421
13593 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide

Authors: Gu Zhonghua

Abstract:

Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.

Keywords: waveguide, etch, control, silicon loss

Procedia PDF Downloads 414
13592 Technology of Thermal Spray Coating Machining

Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová

Abstract:

This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.

Keywords: coating, aerospace, plasma, grinding

Procedia PDF Downloads 555
13591 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition

Authors: F. Laatar, S. Ktifa, H. Ezzaouia

Abstract:

Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.

Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties

Procedia PDF Downloads 379
13590 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 508
13589 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z. A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4 % of sulphuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28 % ammonia solution. Then the EFB biomass was subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars

Procedia PDF Downloads 618
13588 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology

Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan

Abstract:

Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.

Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring

Procedia PDF Downloads 324
13587 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 310
13586 Adhesion of Sputtered Copper Thin Films Deposited on Flexible Substrates

Authors: Rwei-Ching Chang, Bo-Yu Su

Abstract:

Adhesion of copper thin films deposited on polyethylene terephthAdhesion of copper thin films deposited on polyethylene terephthalate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.alate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.

Keywords: flexible substrate, sputtering, adhesion, copper thin film

Procedia PDF Downloads 131
13585 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation

Authors: Medhanie Gebremedhin Gebru, Alex Schechter

Abstract:

Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².

Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation

Procedia PDF Downloads 145
13584 Postprandial effect of Breadsticks intake from Durum Wheat Flour Mixtures on in Healthy Volunteers

Authors: Haralabos C. karantonis, Afroditi Michalaki

Abstract:

High intakes of carbohydrates and fats have been associated with an increased risk of chronic diseases due to the role of postprandial oxidative stress. This pilot nutritional intervention aimed to examine the acute effect of consuming two different types of breadsticks prepared from durum wheat flour mixtures differing in total phenolic content on postprandial inflammatory and oxidant responses in healthy volunteers. A cross-over, controlled, and single-blind clinical trial was designed, and two isocaloric high-fat and high-carbohydrate meals were tested. Serum total, High Density Lipoprotein (HDL)- and Low Density Lipoprotein (LDL)-cholesterol, triglycerides, glucose, C-reactive protein (CRP), uric acid, plasma total antioxidant capacity, and antiplatelet activity were determined in fasting and 30, 60, and 120 min after consumption. The results showed a better postprandial HDL-cholesterol and total antioxidant activity response in the intervention group. The choice of durum wheat flours with higher phenolic content and antioxidant activity is presented as promising for human health, and clinical studies will expand to draw safer conclusions.

Keywords: antioxidant, antiplatelet, durum wheat, nutritional value

Procedia PDF Downloads 57
13583 The Study of Platelet-Rich Plasma(PRP) on Wounds of OLEFT Rats Using Expression of MMP-2, MMP-9 mRNA

Authors: Ho Seong Shin

Abstract:

Introduction: A research in relation to wound healing also showed that platelet-rich plasma (PRP) was effective on normal tissue regeneration. Nonetheless, there is no evidence that when platelet-rich plasma was applied on diabetic wound, it normalize diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) expression to know the effect of PRP on diabetic wounds using Reverse transcription-polymerase chain reaction (RT-PCR) of MMP-2, MMP-9 mRNA. Materials and Methods: Platelet-rich plasma (PRP) was prepared from blood of 6 rats. The whole 120-mL was added immediately to an anticoagulant. Citrate phosphonate dextrose(CPD) buffer (0.15 mg CPDmL) in a ratio of 1 mL of CPD buffer to 5 mL of blood. The blood was then centrifuged at 220g for 20minutes. The supernatant was saved to produce fibrin glue. The participate containing PRP was used for second centrifugation at 480g for 20 minutes. The pellet from the second centrifugation was saved and diluted with supernatant until the platelet concentration became 900,000/μL. Twenty male, 4week-old OLETF rats were underwent operation; each rat had two wounds created on left and right sides. The each wound of left side was treated with PRP gel, the wound of right side was treated with physiologic saline gauze. Results: RT-PCR analysis; The levels of MMP-2 mRNA in PRP applied tissues were positively related to postwounding days, whereas MMP-2 mRNA expression in saline-applied tissues remained in 5day after treatment. MMP-9 mRNA was undetectable in saline-applied tissues for either tissue, except 3day after treatment. Following PRP-applied tissues, MMP-9 mRNA expression was detected, with maximal expression being seen at third day. The levels of MMP-9 mRNA in PRP applied tissues were reported high intensity of optical density related to saline applied tissues.

Keywords: diabetes, MMP-2, MMP-9, OLETF, PRP, wound healing MMP-9

Procedia PDF Downloads 273