Search results for: cycling mode of transport
3499 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.Keywords: bipartite graph, one-mode projection, clustering, web proxy detection
Procedia PDF Downloads 2453498 Damage Detection in Beams Using Wavelet Analysis
Authors: Goutham Kumar Dogiparti, D. R. Seshu
Abstract:
In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location.Keywords: damage, detection, beams, wavelets
Procedia PDF Downloads 3653497 Use of Electrokinetic Technology to Enhance Chemical and Biological Remediation of Contaminated Sands and Soils
Authors: Brian Wartell, Michel Boufadel
Abstract:
Contaminants such as polycyclic aromatic hydrocarbons (PAHs) are compounds present in crude and petroleum oils and are known to be toxic and often carcinogenic. Therefore, a major effort is placed on tracking their subsurface soil concentrations following an oil spill. The PAHs can persist for years in the subsurface especially if there is a lack of oxygen. Both aerobic and anaerobic biodegradation of PAHs encounter the difficulties of both nutrient transport and bioavailability (proximal access) to the organisms of the contaminants. A technology, known as electrokinetics (EK or EK-BIO for ‘electrokinetic bioremediation’) has been found to transport efficiently nutrients or other chemicals in the subsurface. Experiments were conducted to demonstrate migration patterns in both sands and clay for both ionic and nonionic compounds and aerobic biodegradation studies were conducted with soil spiked with Polycyclic Aromatic Hydrocarbons yielding interesting results. In one set of experiment, Self-designed electrokinetic setups were constructed to examine the differences in electromigration and electroosmotic rates. Anionic and non-ionic dyes were used to visualize these phenomena, respectively. In another experiment, a silt-clay soil was spiked with three low-molecular-weight compounds (fluorene, phenanthrene, fluoranthene) and placed within self-designed electrokinetic setups and monitored for aerobic degradation. Plans for additional studies are in progress including the transport of peroxide through anaerobic sands.Keywords: bioavailability, bioremediation, electrokinetics, subsurface transport
Procedia PDF Downloads 1543496 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus
Authors: Jiayi Pan, Le Qin, Shichan Zhang
Abstract:
Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation
Procedia PDF Downloads 2143495 Green Aviation System: The Way Forward for Better Environment
Authors: Ramana Reddy, Vijay Kothari
Abstract:
Aircraft provide a fast, reliable mode of transport with no comparable alternative for long distance travel. Throughout the years, technology improvements have been made to aircraft and engines to make them more fuel efficient. Air traffic continues to grow around the world and needs more aircrafts to accommodate such rapid growth. This has direct consequences on two of the most important environmental factors i.e. emissions and noise. Aviation contributes about 2% of global greenhouse gas emissions. Aviation emits a number of pollutants that alter the chemical composition of the atmosphere, changing its radiative balance and hence influencing the climate. In order to reduce or if possible eliminate potential harm to the environment and also make air travel efficient and economical, an environmentally beneficial concept called “Green Aviation System” is required. This is a structured frame work with elements like innovative technologies/tools in engineering design, manufacturing, airport and fleet operations.Keywords: air traffic, environment, emissions, noise, green aviation system
Procedia PDF Downloads 4563494 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3773493 Sliding Mode Control of a Photovoltaic Grid-Connected System with Active and Reactive Power Control
Authors: M. Doumi, K. Tahir, A. Miloudi, A. G. Aissaoui, C. Belfedal, S. Tahir
Abstract:
This paper presents a three-phase grid-connected photovoltaic generation system with unity power factor for any situation of solar radiation based on voltage-oriented control (VOC). An input voltage clamping technique is proposed to control the power between the grid and photovoltaic system, where it is intended to achieve the maximum power point operation. This method uses a Perturb and Observe (P&O) controller. The main objective of this work is to compare the energy production unit performances by the use of two types of controllers (namely, classical PI and Sliding Mode (SM) Controllers) for the grid inverter control. The proposed control has a hierarchical structure with a grid side control level to regulate the power (PQ) and the current injected to the grid and to obtain a common DC voltage constant. To show the effectiveness of both control methods performances analysis of the system are analyzed and compared by simulation and results included in this paper.Keywords: grid connected photovoltaic, MPPT, inverter control, classical PI, sliding mode, DC voltage constant, voltage-oriented control, VOC
Procedia PDF Downloads 6093492 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control
Procedia PDF Downloads 4653491 Ground State Phases in Two-Mode Quantum Rabi Models
Authors: Suren Chilingaryan
Abstract:
We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED
Procedia PDF Downloads 3673490 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 533489 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery
Authors: Atef Y. Shenouda, Anton A. Momchilov
Abstract:
Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.Keywords: CdO, graphene, negative electrode, lithium battery
Procedia PDF Downloads 1613488 Modeling Electrical Properties of Hetero-Junction-Graphene/Pentacene and Gold/Pentacene
Authors: V. K. Lamba, Abhinandan Bharti
Abstract:
We investigate the electronic transport properties across the graphene/ pentacene and gold/pentacene interface. Further, we studied the effect of ripples/bends in pentacene using NEGF-DFT approach. Current transport across the pentacene/graphene interface is found to be remarkably different from transport across pentacene/Gold interfaces. We found that current across these interfaces could be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Further, the degree of bend or degrees of the curve formed during ripple formation strongly change the optimized geometric structures, charge distributions, energy bands, and DOS. The misorientation and hybridization of carbon orbitals are associated with a variation in bond lengths and carrier densities, and are the causes of the dramatic changes in the electronic structure during ripple formation. The electrical conductivity decreases with increase in curvature during ripple formation or due to bending of pentacene molecule and a decrease in conductivity is directly proportional to the increase in curvature angle and given by quadratic relation.Keywords: hetero-junction, grapheme, NEGF-DFT, pentacene, gold/pentacene
Procedia PDF Downloads 2323487 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran
Authors: Nima Safaei, Arezoo Masoud, Babak Safaei
Abstract:
In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.Keywords: BMI, linear regression, transportation, walking, work trips
Procedia PDF Downloads 1963486 Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam
Authors: I.J. Kim, B.C. Kim, J.H. Kim, C.-Y. Yi
Abstract:
Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %.Keywords: graphite calorimeter, finite element analysis, heat transfer, quasi-adiabatic mode
Procedia PDF Downloads 4303485 Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates
Authors: Yun-Hsuan Yu, Chi-Shung Tang, Nzar Rauf Abdullah, Vidar Gudmundsson
Abstract:
Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength.Keywords: spin-orbit, zeeman, top-gate, finger-gate, bound state
Procedia PDF Downloads 2693484 Feature Extraction and Classification Based on the Bayes Test for Minimum Error
Authors: Nasar Aldian Ambark Shashoa
Abstract:
Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach
Procedia PDF Downloads 5273483 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems
Authors: Malika Elkyal
Abstract:
We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations
Procedia PDF Downloads 5583482 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases
Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner
Abstract:
Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations
Procedia PDF Downloads 1173481 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector
Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi
Abstract:
The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport
Procedia PDF Downloads 1113480 Prospect and Challenges of Public Bicycle Sharing System in Indian Cities
Authors: Anil Kumar
Abstract:
Public Bicycle System (PBS), generally known as Public Bicycle Share System or Bike-Share, is a service provided to the everyday commuters in which several cycles are available on the shared system. The concept of PBS is new to the people of India and requires more study in the fields of essential requirements, major infrastructural requirements, social acceptability, and various challenges. In various Indian cities, MRTS, BRTS, Monorail, and other modes of transport have been adopted for the main haul of transport. These modes take more time, space and are also expensive to implement. At the same time, the PBS system is more economical and takes less time to implement. The main benefit of the PBS system is that it is more environmentally friendly. PBS is being implemented in many Indian cities for public use, but various challenges are associated with this. The study aims to determine what are the basic infrastructural requirements for PBS in India, as well as to determine to what extent a Public Bike Sharing System can provide a quality and efficient service to passengers as a primary method of transportation.Keywords: public bicycle sharing system, sustainable transport, infrastructure, smart city
Procedia PDF Downloads 1923479 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H
Authors: Sherman Ho, Ahmed Cherif Megri
Abstract:
Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data
Procedia PDF Downloads 663478 Effects of E-Learning Mode of Instruction and Conventional Mode of Instruction on Student’s Achievement in English Language in Senior Secondary Schools, Ibadan Municipal, Nigeria
Authors: Ibode Osa Felix
Abstract:
The use of e-Learning is presently intensified in the academic world following the outbreak of the Covid-19 pandemic in early 2020. Hitherto, e-learning had made its debut in teaching and learning many years ago when it emerged as an aspect of Computer Based Teaching, but never before has its patronage become so important and popular as currently obtains. Previous studies revealed that there is an ongoing debate among researchers on the efficacy of the E-learning mode of instruction over the traditional teaching method. Therefore, the study examined the effect of E-learning and Conventional Mode of Instruction on Students Achievement in the English Language. The study is a quasi-experimental study in which 230 students, from three public secondary schools, were selected through a simple random sampling technique. Three instruments were developed, namely, E-learning Instructional Guide (ELIG), Conventional Method of Instructional Guide (CMIG), and English Language Achievement Test (ELAT). The result revealed that students taught through the conventional method had better results than students taught online. The result also shows that girls taught with the conventional method of teaching performed better than boys in the English Language. The study, therefore, recommended that effort should be made by the educational authorities in Nigeria to provide internet facilities to enhance practices among learners and provide electricity to power e-learning equipment in the secondary schools. This will boost e-learning practices among teachers and students and consequently overtake conventional method of teaching in due course.Keywords: e-learning, conventional method of teaching, achievement in english, electricity
Procedia PDF Downloads 1703477 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung
Authors: Yu-Chen Hsu, Kuang C. Lin
Abstract:
The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows
Procedia PDF Downloads 3113476 Integration of the Battery Passport into the eFTI Platform to Improve Digital Data Exchange in the Context of Battery Transport
Authors: Max Plotnikov, Arkadius Schier
Abstract:
To counteract climate change, the European Commission adopted the European Green Deal (EDG) in 2019. Some of the main objectives of the EDG are climate neutrality by 2050, decarbonization, sustainable mobility, and the shift from a linear economy to a circular economy in the European Union. The mobility turnaround envisages, among other things, the switch from classic internal combustion vehicles to electromobility. The aforementioned goals are therefore accompanied by increased demand for lithium-ion batteries (LIBs) and the associated logistics. However, this inevitably gives rise to challenges that need to be addressed. Depending on whether the LIB is transported by road, rail, air, or sea, there are different regulatory frameworks in the European Union that relevant players in the value chain must adhere to. LIBs are classified as Dangerous Goods Class 9, and against this backdrop, there are various restrictions that need to be adhered to when transporting them for various actors. Currently, the exchange of information in the value chain between the various actors is almost entirely paper-based. Especially in the transport of dangerous goods, this often leads to a delay in the transport or to incorrect data. The exchange of information with the authorities is particularly essential in this context. A solution for the digital exchange of information is currently being developed. Electronic freight transport information (eFTI) enables fast and secure exchange of information between the players in the freight transport process. This concept is to be used within the supply chain from 2025. Another initiative that is expected to improve the monitoring of LIB in this context, among other things, is the battery pass. In July 2023, the latest battery regulation was adopted in the Official Journal of the European Union. This battery pass gives different actors static as well as dynamic information about the batteries depending on their access rights. This includes master data such as battery weight or battery category or information on the state of health or the number of negative events that the battery has experienced. The integration of the battery pass with the eFTI platform will be investigated for synergy effects in favor of the actors for battery transport.Keywords: battery logistics, battery passport, data sharing, eFTI, sustainability
Procedia PDF Downloads 793475 Optimal Planning of Transmission Line Charging Mode During Black Start of a Hydroelectric Unit
Authors: Mohammad Reza Esmaili
Abstract:
After the occurrence of blackouts, the most important subject is how fast the electric service is restored. Power system restoration is an immensely complex issue and there should be a plan to be executed within the shortest time period. This plan has three main stages of black start, network reconfiguration and load restoration. In the black start stage, operators and experts may face several problems, for instance, the unsuccessful connection of the long high-voltage transmission line connected to the electrical source. In this situation, the generator may be tripped because of the unsuitable setting of its line charging mode or high absorbed reactive power. In order to solve this problem, the line charging process is defined as a nonlinear programming problem, and it is optimized by using GAMS software in this paper. The optimized process is performed on a grid that includes a 250 MW hydroelectric unit and a 400 KV transmission system. Simulations and field test results show the effectiveness of optimal planning.Keywords: power system restoration, black start, line charging mode, nonlinear programming
Procedia PDF Downloads 803474 Multiple Winding Multiphase Motor for Electric Drive System
Authors: Zhao Tianxu, Cui Shumei
Abstract:
This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency
Procedia PDF Downloads 3593473 Impact of the Transport on the Urban Heat Island
Authors: L. Haddad, Z. Aouachria
Abstract:
The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.Keywords: atmospheric pollution, impact on the health, urban transport, heat island
Procedia PDF Downloads 3953472 Experience of Transfering Critically Ill Patients on a Transport Ventilator in a Lower Middle-Income Country-Uganda
Authors: Baluku Nathan
Abstract:
Transferring critically ill patients from one health facility to another poses a major risk to the patient because of increased oxygen demands. transferring patients with critical COVID-19 from a rural health canter in a rural district to a national referral hospital over 350 km in 7 hours would require three size H oxygen cylinders for successful transfer. It was always difficult to arrange the three size cylinders in the ambulance as workspace was greatly compromised for the ambulance assistant. Purpose: The purpose of this study was to investigate the impact and effectiveness of transport ventilators on the transportation of the critically ill patients from rural health canters to national referral hospitals in Uganda. Methodology: This was a descriptive cross-sectional study conducted in sept 2022 among critical care nurses and ambulance assistants who had used both methods of transportation (ventilators and cylinders). A semi structured questionnaire was used to collect quantitative data after informed consent. Results: From the findings, distribution of transport ventilators to the regional referral hospitals by the Ministry of Health has gradually improved patient transfer as the team requires less than one size oxygen cylinder to successfully transfer a patient. We use two ambulance assistants (a critical care nurse and another nurse who has been trained on use of the ventilator) when transferring patients with critical COVID-19 as the teams have to interchange over the long distance. Conclusions: Transport ventilators are effective and efficient in transferring critically ill patients, therefore should be rolled out to lower levels coupled with user training to improve outcomes of patients transferred in ambulances in lower income countries.Keywords: emergency medical technician, critically ill, COVID-19, transport ventilator
Procedia PDF Downloads 863471 Characterization of Solanum tuberosum Ammonium Transporter Gene Using Bioinformatics Approach
Authors: Adewole Tomiwa Adetunji, Francis Bayo Lewu, Richard Mundembe
Abstract:
Plants require nitrogen (N) to support desired production levels. There is a need for better understanding of N transport mechanism in order to improve N assimilation by plant root. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which N is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was amplified, sequenced and characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design 976 base pairs AMT1-specific primers which include forward primer 5’- GCCATCGCCGCCGCCGG-3’ and reverse primer 5’-GGGTCAGATCCATACCCGC-3’. These primers were used to amplify the Solanum tuberosum AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family due to the clade and high similarity it shared with other plant AMT1 genes. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1, and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th-10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum
Procedia PDF Downloads 2263470 Health Economics in the Cost-Benefit Analysis of Transport Schemes
Authors: Henry Kelly, Helena Shaw
Abstract:
This paper will seek how innovative methods from Health Economics and, to a lesser extent, wellbeing analysis can be applied in the Cost-Benefit Analysis (CBA) of transport infrastructure and policy interventions. The context for this will focus on the framework articulated by the UK Treasury (finance department) and the English Department for Transport. Both have well-established methods for undertaking CBA, but there is increased policy interest, particularly at a regional level of exploring broader strategic goals beyond those traditionally associated with transport user benefits, productivity gains, and labour market access. Links to different CBA approaches internationally, such as New Zealand, France, and Wales will be referenced. By exploring a complementary method of accessing the impacts of policies through the quantification of health impacts is a fruitful line to explore. In a previous piece of work, 14 impact pathways were identified, mapping the relationship between transport and health. These are wide-ranging, from improved employment prospects, the stress of unreliable journey times, and air quality to isolation and loneliness. Importantly, we will consider these different measures of health from an intersectional point of view to ensure that the basis that remains in the health industry does not get translated across to this work. The objective is to explore how a CBA based on these pathways may, through quantifying forecast impacts in terms of Quality-Adjusted Life Years may, produce different findings than a standard approach. Of particular interest is how a health-based approach may have different distributional impacts on socio-economic groups and may favour distinct types of interventions. Consideration will be given to the degree this approach may double-count impacts or if it is possible to identify additional benefits to the established CBA approach. The investigation will explore a range of schemes, from a high-speed rail link, highway improvements, rural mobility hubs, and coach services to cycle lanes. The conclusions should aid the progression of methods concerning the assessment of publicly funded infrastructure projects.Keywords: cost-benefit analysis, health, QALYs transport
Procedia PDF Downloads 80