Search results for: shear effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15258

Search results for: shear effect

15258 Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test

Authors: R. Alias, A. Kasa, M. R. Taha

Abstract:

The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200, and 300 kPa. The results show that the peak and residual shear strength decreases as particle size increases.

Keywords: particle size, shear strength, granular material, direct shear test

Procedia PDF Downloads 459
15257 Size Effect on Shear Strength of Slender Reinforced Concrete Beams

Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia

Abstract:

Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.

Keywords: reinforced concrete beams; shear strength; prediction models; size effect

Procedia PDF Downloads 129
15256 Study on the Impact of Size and Position of the Shear Field in Determining the Shear Modulus of Glulam Beam Using Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

The shear modulus of a timber beam can be determined using torsion test or shear field test method. The shear field test method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test. The current code of practice advises using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. The size and the position of the constructing square might influence the shear modulus determination. This study aimed to investigate the size and the position effect of the square in the shear field test method. A binocular stereo vision system has been employed to determine the 3D displacement of a grid of target points. Six glue laminated beams were produced and tested. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of the size effect and the position effect of the square. The results have shown that the size of the square has a noticeable influence on the value of shear modulus, while, the position of the square within the area with the constant shear force does not affect the measured mean shear modulus.

Keywords: shear field test method, structural-sized test, shear modulus of Glulam beam, photogrammetry approach

Procedia PDF Downloads 268
15255 Effect of Corrosion on the Shear Buckling Strength

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Ii Kim

Abstract:

The ability to resist the shear strength arises mainly from the web panel of steel girders and as such, the shear buckling strength of these girders has been extensively investigated. For example, Blaser’s reported that when buckling occurs, the tension field has an effect after the buckling strength of the steel is reached. The findings of these studies have been applied by AASHTO, AISC, and to the European Code that provides guidelines for designs aimed at preventing shear buckling. Steel girders are susceptible to corrosion resulting from exposure to natural elements such as rainfall, humidity, and temperature. This corrosion leads to a reduction in the size of the web panel section, thereby resulting in a decrease in the shear strength. The decrease in the panel section has a significant effect on the maintenance section of the bridge. However, in most conventional designs, the influence of corrosion is overlooked during the calculation of the shear buckling strength and hence over-design is common. Therefore, in this study, a steel girder with an A/D of 1:1, as well as a 6-mm-, 16-mm-, and 12-mm-thick web panel, flange, and intermediate reinforcing material, respectively, were used. The total length was set to that (3200 mm) of the default model. The effect of corrosion shear buckling was investigated by determining the volume amount of corrosion, shape of the erosion patterns, and the angular change in the tensile field of the shear buckling strength. This study provides the basic data that will enable designs that incorporate values closer (than those used in most conventional designs) to the actual shear buckling strength.

Keywords: corrosion, shear buckling strength, steel girder, shear strength

Procedia PDF Downloads 345
15254 The Effect of the Water and Fines Content on Shear Strength of Soils

Authors: Ouledja Abdessalam

Abstract:

This work Contains an experimental study of the behavior of Chlef sand under the effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts, and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), The water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriately used to study the shear strength of soils.

Keywords: shear strength, sand, silt, contractancy, dilatancy, friction angle, cohesion, fines content

Procedia PDF Downloads 465
15253 Study of Composite Beam under the Effect of Shear Deformation

Authors: Hamid Hamli Benzahar

Abstract:

The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.

Keywords: composite beam, shear deformation, moments, finites elements

Procedia PDF Downloads 44
15252 The Effect of Water and Fines Content on Shear Strength of Silty Soils

Authors: Dellal Seyyid Ali

Abstract:

This work Contains an experimental study of the behavior of Chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion ...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands ...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), the water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: shear strength, sand, silt, contractanct, dilatancy, friction angle, cohesion, fines content

Procedia PDF Downloads 233
15251 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: shear strength parameters, direct shear test, silty sand, shear stress, shear deformation

Procedia PDF Downloads 135
15250 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior

Authors: Sunghyun Kim, Hong-Gun Park

Abstract:

In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.

Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall

Procedia PDF Downloads 361
15249 Shear Strengthening of Reinforced Concrete Deep Beam Using Fiber Reinforced Polymer Strips

Authors: Ruqaya H. Aljabery

Abstract:

Reinforced Concrete (RC) deep beams are one of the main critical structural elements in terms of safety since significant loads are carried in a short span. The shear capacity of these sections cannot be predicted accurately by the current design codes like ACI and EC2; thus, they must be investigated. In this research, non-linear behavior of RC deep beams strengthened in shear with Fiber Reinforced Polymer (FRP) strips, and the efficiency of FRP in terms of enhancing the shear capacity in RC deep beams are examined using Finite Element Analysis (FEA), which is conducted using the software ABAQUS. The effect of several parameters on the shear capacity of the RC deep beam are studied in this paper as well including the effect of the cross-sectional area of the FRP strip and the shear reinforcement area to the spacing ratio (As/S), and it was found that FRP enhances the shear capacity significantly and can be a substitution of steel stirrups resulting in a more economical design.

Keywords: Abaqus, concrete, deep beam, finite element analysis, FRP, shear strengthening, strut-and-tie

Procedia PDF Downloads 121
15248 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 120
15247 Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test

Authors: Reza Ziaie Moayed, Seyed Abdolhassan Naeini, Peyman Nouri, Hamed Yekehdehghan

Abstract:

The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test.

Keywords: liquidity index, plasticity index, shear strength, unsaturated soil

Procedia PDF Downloads 107
15246 Calculating Shear Strength Parameter from Simple Shear Apparatus

Authors: G. Nitesh

Abstract:

The shear strength of soils is a crucial parameter instability analysis. Therefore, it is important to determine reliable values for the accuracy of stability analysis. Direct shear tests are mostly performed to determine the shear strength of cohesionless soils. The major limitation of the direct shear test is that the failure takes place through the pre-defined failure plane but the failure is not along pre-defined plane and is along the weakest plane in actual shearing mechanism that goes on in the field. This leads to overestimating the strength parameter; hence, a new apparatus called simple shear is developed and used in this study to determine the shear strength parameter that simulates the field conditions.

Keywords: direct shear, simple shear, angle of shear resistance, cohesionless soils

Procedia PDF Downloads 385
15245 The Influence of Water Content on the Shear Resistance of Silty Sands

Authors: Mohamed Boualem Salah

Abstract:

This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: behavior, shear strength, sand, silt, friction angle, cohesion, fines content, moisture content

Procedia PDF Downloads 380
15244 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: end clamp effect, full-size timber test, shear properties, torsion test, wood engineering

Procedia PDF Downloads 259
15243 Comparative Analysis of Residual Shear Depiction and Grain Distribution Characteristics of Slide Soil Profile Sections

Authors: Ephrem Getahun, Shengwen Qi, Songfeng Guo, Yu Zou, Melesse Alemayehu

Abstract:

Residual shear characteristics of slide soil profile sections (SSPS) were examined using ring shear tests to know the relative residual shear behaviors among the sections of slide soil. The multistage-multiphase shearing techniques were employed to perform the experiment for each soil specimen continuously towards large displacements. The grain distribution analysis of SSPS samples was characterized by coarsening upward from bottom slip to the top sections; however, the slip surface was considered as a sheared zone that endorses their low shear resistance for failure. There is an average range of 1-2.5 mm axial displacement on each stage of loadings and phases of shearing that depicts the significant effect of dilation and compression of soil specimen. The middle section has the largest consolidation percentage (10-29%), and vertical displacement compared to other sections and showed high shear strengthening behavior having maximum shear stress of 189kPa at 240kPa loading compared to basal and top sections. It is found that the middle section of SSPS has relatively high shear resistance behavior for large displacement shearing. The residual shear assessment indicates that there is a significant influence of large displacement and rate on the friction coefficient behaviors; it resulted in shear weakening effect to attain their residual condition.

Keywords: comparison, displacements, residual shear stress, shear behavior, slide soils

Procedia PDF Downloads 123
15242 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 505
15241 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 106
15240 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 326
15239 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 449
15238 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 441
15237 Shear Behavior of Ultra High Strength Concrete Beams

Authors: Ghada Diaa, Enas A. Khattab

Abstract:

Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results.

Keywords: ultra high strength, shear strength, diagonal, cracking, steel fibers

Procedia PDF Downloads 586
15236 Effect of Clay Content on the Drained Shear Strength

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: clay, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 412
15235 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 357
15234 An Experimental Study of the Effectiveness of Lubricants in Reducing the Sidewall Friction

Authors: Jian Zheng, Li Li, Maxime Daviault

Abstract:

In several cases, one needs apply lubrication materials in laboratory tests to reduce the friction (shear strength) along the interfaces between a tested soil and the side walls of container. Several types of lubricants are available. Their effectiveness had been tested mostly through direct shear tests. These testing conditions are quite different than those when the tested soil is placed in the container. Thus, the shear strengths measured from direct shear tests may not be totally representative of those of interfaces between the tested soil and the sidewalls of container. In this paper, the effectiveness of different lubricants used to reduce the friction (shear strength) of soil-structure interfaces has been studied. Results show that the selected lubricants do not significantly reduce the sidewall friction (shear strength). Rather, the application of wax, graphite, grease or lubricant oil has effect to increase the sidewall shear strength due probably to the high viscosity of such materials. Subsequently, the application of lubricants between tested soil and sidewall and neglecting the friction (shear strength) along the sidewalls may lead to inaccurate test results.

Keywords: arching, friction, laboratory tests, lubricants

Procedia PDF Downloads 240
15233 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength

Procedia PDF Downloads 229
15232 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam

Procedia PDF Downloads 457
15231 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior

Procedia PDF Downloads 283
15230 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Authors: M. Kakavand, S. A. Naeini

Abstract:

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Keywords: dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear, TSS

Procedia PDF Downloads 94
15229 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand

Authors: S. A. Naeini, M. Mortezaee

Abstract:

The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.

Keywords: fine-grained, liquefaction, plasticity, shear strength, sand

Procedia PDF Downloads 108