Search results for: united nations high commissioner for refugees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21600

Search results for: united nations high commissioner for refugees

16740 Analyzing the Effectiveness of a Bank of Parallel Resistors, as a Burden Compensation Technique for Current Transformer's Burden, Using LabVIEW™ Data Acquisition Tool

Authors: Dilson Subedi

Abstract:

Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However, due to upgradation of electromechanical relays to numerical relays and electromechanical energy meters to digital meters, the connected burden, which defines some of the CT characteristics, has drastically reduced. This has led to the system experiencing high currents damaging the connected relays and meters. Since the protection and metering equipment's are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore, during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and on the reliability of the protection and metering system. This paper shows the effectiveness of a bank of parallel connected resistors, as a burden compensation technique, in compensating the burden of under-burdened CT’s. The response of the CT in the case of failure of one or more resistors at different levels of overcurrent will be captured using the LabVIEWTM data acquisition hardware (DAQ). The analysis is done on the real-time data gathered using LabVIEWTM. Variation of current transformer saturation characteristics with changes in burden will be discussed.

Keywords: accuracy limiting factor, burden, burden compensation, current transformer

Procedia PDF Downloads 237
16739 Current Status of Ir-192 Brachytherapy in Bangladesh

Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar

Abstract:

Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.

Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas

Procedia PDF Downloads 419
16738 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 121
16737 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 163
16736 Use of Locally Effective Microorganisms in Conjunction with Biochar to Remediate Mine-Impacted Soils

Authors: Thomas F. Ducey, Kristin M. Trippe, James A. Ippolito, Jeffrey M. Novak, Mark G. Johnson, Gilbert C. Sigua

Abstract:

The Oronogo-Duenweg mining belt –approximately 20 square miles around the Joplin, Missouri area– is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Over almost a century of mining (from 1848 to the late 1960’s), an estimated ten million tons of cadmium, lead, and zinc containing material have been deposited on approximately 9,000 acres. Sites that have undergone remediation, in which the O, A, and B horizons have been removed along with the lead contamination, the exposed C horizon remains incalcitrant to revegetation efforts. These sites also suffer from poor soil microbial activity, as measured by soil extracellular enzymatic assays, though 16S ribosomal ribonucleic acid (rRNA) indicates that microbial diversity is equal to sites that have avoided mine-related contamination. Soil analysis reveals low soil organic carbon, along with high levels of bio-available zinc, that reflect the poor soil fertility conditions and low microbial activity. Our study looked at the use of several materials to restore and remediate these sites, with the goal of improving soil health. The following materials, and their purposes for incorporation into the study, were as follows: manure-based biochar for the binding of zinc and other heavy metals responsible for phytotoxicity, locally sourced biosolids and compost to incorporate organic carbon into the depleted soils, effective microorganisms harvested from nearby pristine sites to provide a stable community for nutrient cycling in the newly composited 'soil material'. Our results indicate that all four materials used in conjunction result in the greatest benefit to these mine-impacted soils, based on above ground biomass, microbial biomass, and soil enzymatic activities.

Keywords: locally effective microorganisms, biochar, remediation, reclamation

Procedia PDF Downloads 203
16735 Averting a Financial Crisis through Regulation, Including Legislation

Authors: Maria Krambia-Kapardis, Andreas Kapardis

Abstract:

The paper discusses regulatory and legislative measures implemented by various nations in an effort to avert another financial crisis. More specifically, to address the financial crisis, the European Commission followed the practice of other developed countries and implemented a European Economic Recovery Plan in an attempt to overhaul the regulatory and supervisory framework of the financial sector. In 2010 the Commission introduced the European Systemic Risk Board and in 2011 the European System of Financial Supervision. Some experts advocated that the type and extent of financial regulation introduced in the European crisis in the wake of the 2008 crisis has been excessive and counterproductive. In considering how different countries responded to the financial crisis, global regulators have shown a more focused commitment to combat industry misconduct and to pre-empt abusive behavior. Regulators have also increased funding and resources at their disposal; have increased regulatory fines, with an increasing trend towards action against individuals; and, finally, have focused on market abuse and market conduct issues. Financial regulation can be effected, first of all, through legislation. However, neither ex ante or ex post regulation is by itself effective in reducing systemic risk. Consequently, to avert a financial crisis, in their endeavor to achieve both economic efficiency and financial stability, governments need to balance the two approaches to financial regulation. Fiduciary duty is another means by which the behavior of actors in the financial world is constrained and, thus, regulated. Furthermore, fiduciary duties extend over and above other existing requirements set out by statute and/or common law and cover allegations of breach of fiduciary duty, negligence or fraud. Careful analysis of the etiology of the 2008 financial crisis demonstrates the great importance of corporate governance as a way of regulating boardroom behavior. In addition, the regulation of professions including accountants and auditors plays a crucial role as far as the financial management of companies is concerned. In the US, the Sarbanes-Oxley Act of 2002 established the Public Company Accounting Oversight Board in order to protect investors from financial accounting fraud. In most countries around the world, however, accounting regulation consists of a legal framework, international standards, education, and licensure. Accounting regulation is necessary because of the information asymmetry and the conflict of interest that exists between managers and users of financial information. If a holistic approach is to be taken then one cannot ignore the regulation of legislators themselves which can take the form of hard or soft legislation. The science of averting a financial crisis is yet to be perfected and this, as shown by the preceding discussion, is unlikely to be achieved in the foreseeable future as ‘disaster myopia’ may be reduced but will not be eliminated. It is easier, of course, to be wise in hindsight and regulating unreasonably risky decisions and unethical or outright criminal behavior in the financial world remains major challenges for governments, corporations, and professions alike.

Keywords: financial crisis, legislation, regulation, financial regulation

Procedia PDF Downloads 382
16734 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation

Procedia PDF Downloads 309
16733 Research Review: The Mediating Role of Innovation Capability from Year 2010-2016

Authors: Logaiswari Indiran, Noraindah Abdullah Fahim, Zainab Khalifah, Rohaizat Baharun, Kamariah Ismail

Abstract:

Innovation capability is believed to give an important impact on organization’s sustainability and high performance. For instance, innovation capability able to transform technology into a specific organization’s operation, managerial, and transaction which increase organizational performance and economic growth of a country. In fact, research on high level of various antecedents has also shown positive impact on innovation capability. However, there are lacking studies explored on various kinds of antecedents which relate innovation capability’s role as mediator in the relationship. Thus, the purpose of this study is to specifically exhibit the mediation role of innovation capability between variety of antecedents and with different outcomes of an organization across industries. This study reviewed previous literature that has identified 'innovation capability' as mediator between the period of 2010 – 2016 and carries out a literature-based analysis of the findings in each article. From our review, innovation capability has been seen as a key role to mediate the relationship between independent variable and dependent variable in various industry. As the role of innovation capability as mediator is significant, new researchers should focus on varieties of independent variables. The review of this study will be useful for practitioners and researchers to understand and apply innovation capability as mediator to increase organizational success and innovativeness.

Keywords: innovation capability, mediator, organization performance, antecedents

Procedia PDF Downloads 278
16732 Postprandial Satiety, Sweets Intake, Physical Activity, and Depressive Symptoms in Relation to Rs9939609 Polymorphism of the FTO Gene

Authors: Małgorzata Wrzosek, Nina Baruch, Beata Jabłonowska-Lietz

Abstract:

Background: The fat mass & obesity-associated (FTO) gene is linked to an increased risk of obesity. However, the relation between rs9939609 and eating behaviors or energy expenditure is not fully elucidated. The aim of this study was to investigate the relationship between the rs9939609 polymorphism of the FTO gene and the postprandial satiety, sweets intake, physical activity and depressive symptoms in patients with obesity. Methods: The study group consisted of 585 subjects with a BMI of 42.97.0 kg/m². The rs9939609 polymorphism of the FTO gene was examined using real time – PCR method. The severity of depressive symptoms was assessed with the Beck Depression Inventory (BDI-II). Information was obtained about demographics, eating habits and lifestyle. Results: More than half (63.5%) of the patients reported consumption of sweets between main meals and 30% declared high and very high postprandial satiety and the frequency of TA/AA carriers in rs9939609 (FTO) compared with TT carriers was similar. Significantly lower BDI-II scores were found in subjects with higher level of physical activity and it was seen amongst patients with the AA and AT genotypes of the FTO rs9939609 polymorphism. Conclusion: Obesity is a highly heritable trait, but eating habits also appear as major factors affecting obesity development.

Keywords: FTO polymorphism, physical activity, obesity, depression, postprandial satiety, sugary foods, sweets

Procedia PDF Downloads 119
16731 Water-in-Diesel Fuel Nanoemulsions Prepared by Modified Low Energy: Emulsion Drop Size and Stability, Physical Properties, and Emission Characteristics

Authors: M. R. Noor El-Din, Marwa R. Mishrif, R. E. Morsi, E. A. El-Sharaky, M. E. Haseeb, Rania T. M. Ghanem

Abstract:

This paper studies the physical and rheological behaviours of water/in/diesel fuel nanoemulsions prepared by modified low energy method. Twenty of water/in/diesel fuel nanoemulsions were prepared using mixed nonionic surfactants of sorbitan monooleate and polyoxyethylene sorbitan trioleate (MTS) at Hydrophilic-Lipophilic Balance (HLB) value of 10 and a working temperature of 20°C. The influence of the prepared nanoemulsions on the physical properties such as kinematic viscosity, density, and calorific value was studied. Also, nanoemulsion systems were subjected to rheological evaluation. The effect of water loading percentage (5, 6, 7, 8, 9 and 10 wt.%) on rheology was assessed at temperatures range from 20 to 60°C with temperature interval of 10 for time lapse 0, 1, 2 and 3 months, respectively. Results show that all of the sets nanoemulsions exhibited a Newtonian flow character of low-shear viscosity in the range of 132 up to 191 1/s, and followed by a shear-thinning region with yield value (Non-Newtonian behaviour) at high shear rate for all water ratios (5 to 10 wt.%) and at all test temperatures (20 to 60°C) for time ageing up to 3 months. Also, the viscosity/temperature relationship of all nanoemulsions fitted well Arrhenius equation with high correlation coefficients that ascertain their Newtonian behavior.

Keywords: alternative fuel, nanoemulsion, surfactant, diesel fuel

Procedia PDF Downloads 299
16730 Produce Large Surface Area Activated Carbon from Biomass for Water Treatment

Authors: Rashad Al-Gaashani

Abstract:

The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 65
16729 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound

Authors: S. Said, Asmaa A. Abdulrahman

Abstract:

MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.

Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT

Procedia PDF Downloads 94
16728 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 225
16727 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes

Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah

Abstract:

The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.

Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential

Procedia PDF Downloads 75
16726 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection

Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya

Abstract:

Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.

Keywords: carbon nanotubes network, biosensor, human serum albumin

Procedia PDF Downloads 129
16725 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.

Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy

Procedia PDF Downloads 235
16724 Prevalence of Urinary Tract Infections and Risk Factors among Pregnant Women Attending Ante Natal Clinics in Government Primary Health Care Centres in Akure

Authors: Adepeju Simon-Oke, Olatunji Odeyemi, Mobolanle Oniya

Abstract:

Urinary tract infection has become the most common bacterial infections in humans, both at the community and hospital settings; it has been reported in all age groups and in both sexes. This study was carried out in order to determine and evaluate the prevalence, current drug susceptibility pattern of the isolated organisms and identify the associated risk factors of UTIs among the pregnant women in Akure, Ondo State, Nigeria. A cross-sectional study was conducted on the urine of pregnant women, and socio-demographic information of the women was collected. A total of 300 clean midstream urine samples were collected, and a general urine microscopic examination and culture were carried out, the Microbact identification system was used to identify gram-negative bacteria. Out of the 300 urine samples cultured, 183(61.0%) yielded significant growth of urinary pathogens while 117(39.0%) yielded either insignificant growth or no growth of any urinary pathogen. Prevalence of UTI was significantly associated with the type of toilet used, symptoms of UTI, and previous history of urinary tract infection (p<0.05). Escherichia coli 58(31.7%) was the dominant pathogen isolated, and the least isolated uropathogens were Citrobacter freudii and Providencia retgerri 2(1.1%) respectively. Gram-negative bacteria showed 77.6%, 67.9%, and 61.2% susceptibility to ciprofloxacin, augmentin, and chloramphenicol, respectively. Resistance against septrin, chloramphenicol, sparfloxacin, amoxicillin, augmentin, gentamycin, pefloxacin, trivid, and streptomycin was observed in the range of 23.1 to 70.1%. Gram-positive uropathogens isolated showed high resistance to amoxicillin (68.4%) and high susceptibility to the remaining nine antibiotics in the range 65.8% to 89.5%. This study justifies that pregnant women are at high risk of UTI. Therefore screening of pregnant women during antenatal clinics should be considered very important to avoid complications. Health education with regular antenatal and personal hygiene is recommended as precautionary measures to UTI.

Keywords: pregnant women, prevalence, risk factor, UTIs

Procedia PDF Downloads 126
16723 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography

Authors: Mulatu Kassie Birhanu

Abstract:

Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.

Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane

Procedia PDF Downloads 218
16722 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 169
16721 Sectoral Linkages and Key Sectors of the Georgian Economy

Authors: Vano Benidze, Ioseb Berikashvili

Abstract:

Since 2003, Georgia has implemented many successful reforms, however, economic growth, poverty alleviation and unemployment reduction are still major challenges facing country’s economy. This is due to the fact that most reforms during the past 2 decades were mainly geared toward improving the institutional environment, while economy’s sectoral composition and industrial policy were largely ignored. Each individual sector plays its own specific role in the functioning of the whole economy that cannot be accomplished by any other sector. However, given the unavoidable reality that one sector uses intermediate inputs from other industries to produce its output and sells part of its output to other sectors, the importance of sectors should consider these sectoral interdependencies as well. Simply put, not all industries are equally useful for economic growth and development. In this context, the aim of this paper is to identify the key economic sectors of the Georgian economy. Leontief input-output analysis has been used in deriving backward and forwards linkages for all sectors in the Georgian economy for 2020 and 2021. Sectors with both high backward and forward linkages have been identified as key sectors of the economy. The results obtained are beneficial for the success of the economic and industrial policy of Georgia. If targeted properly by thoughtful policy intervention, key sectors identified in this paper will have a high potential of spreading growth impulses throughout the economy and will possibly generate higher economic growth.

Keywords: structural change, key sectors, development strategies, input-output analysis

Procedia PDF Downloads 66
16720 Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia

Authors: Anis Eloud, Mohamed Ben Amor

Abstract:

Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes.

Keywords: water quality, salinity, geothermal, supply pipe

Procedia PDF Downloads 514
16719 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 114
16718 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 218
16717 Ground Grid Design at the Egyptian Side of the Proposed High Voltage Direct Current Link Tying Egypt and Saudi Arabia

Authors: Samar Akef, Ahdab M. K. El-Morshedy, Mohamed M. Samy, Ahmed M. Emam

Abstract:

This paper presents a safe and realistic design for the proposed high voltage direct current grounding grid for the converter station at Badr City in Egypt. The outcomes show that the estimated results for touch and step voltages are below the safe limits for humans in monopolar operation and fault conditions. The cross-section area of earthing conductor is computed using IEC TS 62344. The results show that touch voltage in monopolar and fault conditions are 46.6 V and 167.68 V, respectively. The optimum number of required earthing rods is obtained by an analytical method. The step voltages are 12.9 and 43 V in monopolar operation and fault conditions. In addition, this paper presents an experimental case study to verify the simulation work executed using CYMGrd software (finite element method based). The percentage error between the measured and simulated surface potential is below 15.9%.

Keywords: grounding, monopolar, fault conditions, step potential, touch potential, CYMGrd, finite element method, experimental case study

Procedia PDF Downloads 51
16716 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 208
16715 Piaui Solar: State Development Impulsed by Solar Photovoltaic Energy

Authors: Amanda Maria Rodrigues Barroso, Ary Paixao Borges Santana Junior, Caio Araujo Damasceno

Abstract:

In Piauí, the Brazilian state, solar energy has become one of the renewable sources targeted by internal and external investments, with the intention of leveraging the development of society. However, for a residential or business consumer to be able to deploy this source, there is usually a need for a high initial investment due to its high cost. The countless high taxes on equipment and services are one of the factors that contribute to this cost and ultimately fall on the consumer. Through analysis, a way of reducing taxes is sought in order to encourage consumer adhesion to the use of photovoltaic solar energy. Thus, the objective is to implement the Piauí Solar Program in the state of Piauí in order to stimulate the deployment of photovoltaic solar energy, through benefits granted to users, providing state development by boosting the diversification of the state's energy matrix. The research method adopted was based on the analysis of data provided by the Teresina City Hall, by the Brazilian Institute of Geography and Statistics and by a private company in the capital of Piauí. The account was taken of the total amount paid in Property and Urban Territorial Property Tax (IPTU), in electricity and in the service of installing photovoltaic panels in a residence with 6 people. Through Piauí Solar, a discount of 80% would be applied to the taxes present in the budgets regarding the implementation of these photovoltaic plates in homes and businesses, as well as in the IPTU. In addition, another factor also taken into account is the energy savings generated after the implementation of these boards. In the studied residence, the annual payment of IPTU went from R $ 99.83 reais to R $ 19.96, the reduction of taxes present in the budget for the implantation of solar panels, caused the value to increase from R $ 42,744.22 to R $ 37,241.98. The annual savings in electricity bills were estimated at around R $ 6,000. Therefore, there is a reduction of approximately 24% in the total invested. The trend of the Piauí Solar program, then, is to bring benefits to the state, providing an improvement in the living conditions of the population, through the savings generated by this program. In addition, an increase in the diversification of the Piauí energy matrix can be seen with the advancement of the use of this renewable energy.

Keywords: development, economy, energy, taxes

Procedia PDF Downloads 121
16714 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin

Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris

Abstract:

While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.

Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin

Procedia PDF Downloads 451
16713 PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector

Authors: Sónia Ribeiro, Diana Farinha, Hélia Sales, Rita Pontes, João Nunes

Abstract:

The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market.

Keywords: polylactic acid, lignocellulosic biomass, agrifood, composite materials

Procedia PDF Downloads 61
16712 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test

Authors: Reza Ziaie Moayed, Ehsan Azini

Abstract:

Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.

Keywords: jet grouting column, soil improvement, numerical modeling, in-situ loading test

Procedia PDF Downloads 126
16711 Active Learning Management for Teacher's Professional Courses in Curriculum and Instruction, Faculty of Education Thaksin University

Authors: Chuanphit Chumkhong

Abstract:

This research aimed 1) to study the effects of the management of Active Learning among 3rd year students enrolled in teacher’s profession courses and 2) to assess the satisfaction of the students with courses using the Active Learning approach. The population for the study consisted of 442 3rd year undergraduate students enrolled in two teacher education courses in 2015: Curriculum Development and Learning Process Management. They were 442 from 11 education programs. Respondents for evaluation of satisfaction with Active Learning management comprised 432 students. The instruments used in research included a detailed course description and rating scale questionnaire on Active Learning. The data were analyzed using arithmetic mean and standard deviation. The results of the study reveal the following: 1. Overall, students gain a better understanding of the Active Learning due to their actual practice on the activity of course. Students have the opportunity to exchange learning knowledge and skills. The AL teaching activities make students interested in the contents and they seek to search for knowledge on their own. 2. Overall, 3rd year students are satisfied with the Active Learning management at a ‘high’ level with a mean score (μ) of 4.12 and standard deviation (σ) of. 51. By individual items, students are satisfied with the 10 elements in the two courses at a ‘high’ level with the mean score (μ) between 3.79 to 4.41 and a standard deviation (σ) between to 68. 79.

Keywords: active learning teaching model, teacher’s professional courses, professional courses, curriculum and instruction teacher's

Procedia PDF Downloads 233