Search results for: learning attitudes
3562 Transitivity, Mood and Modality Analysis in Malaysian News Headlines on Healthy Eating
Authors: Faith Fang Xi Ooi, Kam-Fong Lee
Abstract:
Headlines are generally the summary of the content of news articles. With the added influence of hectic lifestyles, readers may rely solely on the headlines for information. In the media, what is reported concerning health issues are government responses and community involvement. There is a need for a call to action to curb health issues and not just reporting on what the government is doing about these health-related issues. In other words, linguistic elements of persuasive communicative function should be realized when reporting on health issues. Hence, this paper aims at identifying and analyzing the transitivity, Mood and Modality systems in two hundred news headlines from two Malaysian online news portals, namely The Star Online and New Straits Times. This study employs the purposive sampling method to obtain the news headlines on healthy eating using the search keyword ‘healthy eating’ and is based on Halliday’s Systemic Functional Linguistics (SFL) framework. The results show that the Material process dominates the process types along with its participants of Scope and Goal. The mood type that constitutes most of the headlines in the two newspapers is the declarative mood. Moreover, for Modality, the median Probability constitutes the highest in the headlines on healthy eating. This study contributes to the implications of being a source of reference for news writers and producers in constructing news headlines and for health campaign strategists to realize the persuasive appeals to influence behaviors and attitudes of the public towards healthy eating.Keywords: healthy eating, modality, mood, news headlines, SFL
Procedia PDF Downloads 1723561 Exploring Teachers’ Beliefs about Diagnostic Language Assessment Practices in a Large-Scale Assessment Program
Authors: Oluwaseun Ijiwade, Chris Davison, Kelvin Gregory
Abstract:
In Australia, like other parts of the world, the debate on how to enhance teachers using assessment data to inform teaching and learning of English as an Additional Language (EAL, Australia) or English as a Foreign Language (EFL, United States) have occupied the centre of academic scholarship. Traditionally, this approach was conceptualised as ‘Formative Assessment’ and, in recent times, ‘Assessment for Learning (AfL)’. The central problem is that teacher-made tests are limited in providing data that can inform teaching and learning due to variability of classroom assessments, which are hindered by teachers’ characteristics and assessment literacy. To address this concern, scholars in language education and testing have proposed a uniformed large-scale computer-based assessment program to meet the needs of teachers and promote AfL in language education. In Australia, for instance, the Victoria state government commissioned a large-scale project called 'Tools to Enhance Assessment Literacy (TEAL) for Teachers of English as an additional language'. As part of the TEAL project, a tool called ‘Reading and Vocabulary assessment for English as an Additional Language (RVEAL)’, as a diagnostic language assessment (DLA), was developed by language experts at the University of New South Wales for teachers in Victorian schools to guide EAL pedagogy in the classroom. Therefore, this study aims to provide qualitative evidence for understanding beliefs about the diagnostic language assessment (DLA) among EAL teachers in primary and secondary schools in Victoria, Australia. To realize this goal, this study raises the following questions: (a) How do teachers use large-scale assessment data for diagnostic purposes? (b) What skills do language teachers think are necessary for using assessment data for instruction in the classroom? and (c) What factors, if any, contribute to teachers’ beliefs about diagnostic assessment in a large-scale assessment? Semi-structured interview method was used to collect data from at least 15 professional teachers who were selected through a purposeful sampling. The findings from the resulting data analysis (thematic analysis) provide an understanding of teachers’ beliefs about DLA in a classroom context and identify how these beliefs are crystallised in language teachers. The discussion shows how the findings can be used to inform professional development processes for language teachers as well as informing important factor of teacher cognition in the pedagogic processes of language assessment. This, hopefully, will help test developers and testing organisations to align the outcome of this study with their test development processes to design assessment that can enhance AfL in language education.Keywords: beliefs, diagnostic language assessment, English as an additional language, teacher cognition
Procedia PDF Downloads 1993560 Challenges Faced by Teachers during Teaching with Developmental Disable Students at Primary Level in Lahore
Authors: Zikra Faiz, Nisar Abid, Muhammad Waqas
Abstract:
This study aim to examine the challenges faced by teachers during teaching to those students who are intellectually disable, suffering from autism spectrum disorder, learning disability, and ADHD at the primary level. The descriptive research design of quantitative approach was adopted to conduct this study; a cross-sectional survey method was used to collect data. The sample was comprised of 258 (43 male and 215 female) teachers who teach at special education institutes of Lahore district selected through proportionate stratified random sampling technique. Self-developed questionnaire was used which was comprised of 22 closed-ended items. Collected data were analyzed through descriptive and inferential statistical techniques by using Statistical Package for Social Sciences (SPSS) version 21. Results show that teachers faced problems during group activities, to handle bad behavior and different disabilities of students. It is concluded that there was a significant difference between male and female teachers perceptions about challenges faced during teaching with developmental disable students. Furthermore, there was a significant difference exist in the perceptions of teachers regarding challenges faced during teaching to students with developmental disabilities in term of teachers’ age and area of specialization. It is recommended that developmentally disable student require extra attention so that, teacher should trained through pre-service and in-service training to teach developmentally disabled students.Keywords: intellectual disability, autism spectrum disorder, ADHD, learning disability
Procedia PDF Downloads 1393559 A Qualitative Investigation on the Effect of COVID-19 on the Views Concerning Marriage and Divorce
Authors: Leman Korkmaz, Bahar Bahtiyar-Saygan
Abstract:
Objective: The COVID-19 pandemic has been affecting the whole world since the beginning of 2020. In addition to health-related and financial effects, there seem to be significant psychological effects as well, among them those related to people’s views and representations of marriage and divorce. Background: Although various impacts of COVID-19 have been investigated since the beginning of the pandemic, there is a limited number of studies on its effects concerning relationships. This research aims to understand how the COVID-19 pandemic affects the views on and representations of marriage and divorce by conducting two studies. Method: In the first study, one-to-one semi-structured interviews were conducted with 31 participants (20 single and 11 married individuals) to investigate their evaluations regarding the effect of COVID-19 on people’s views of marriage in general and their own views of marriage in particular. In the second study, 298 entries on the most frequently used online social platform in Turkey (EkşiSözlük) under two separate headings for COVID-19 impact on marriage and divorce were analyzed, and meaningful thematic units were formed. Results: The findings of the thematic analysis indicated that participants mostly mentioned both the positive and negative effects of COVID-19 on the views and representations of marriage. There were both common (e.g., loneliness, violence, etc.) and distinct (e.g., sexuality, positive and negative effects on attitudes towards marriage, etc.) thematic units between the results of the two studies. Implications: There are considerable implications discussed in light of the literature on Terror Management Theory, Attachment Theory, stress research, and growth perspective.Keywords: COVID-19 pandemic, divorce, marriage, relationships, representations, views
Procedia PDF Downloads 773558 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1753557 Inclusion of Children with Disabilities in Early Childhood Development Programs in Nepal: Construction of a Stakeholder Informed Framework
Authors: Divya Dawadi, Kerry Bissaker
Abstract:
Inclusion of children with a disability (CwD) in Early Childhood Education and Development (ECED) programs in Nepal while viewed as desirable is not widespread. Even though the ECED program is currently providing access to ECED services for one million young children, with the aim to improve children's school readiness by equipping them with the necessary knowledge and skills to succeed more effectively in their primary schooling, access to early year's education in inclusive settings for CwD is challenging. Using a heuristic qualitative design, this research aims to construct a framework by analyzing the perspectives of parents and professionals through interviews and focus group discussions, with a view to recommending a new policy to address the rights of CwD and their families. Several school-based and/or organizational and contextual factors interact to contribute to CwD becoming victims of multiple layers of exclusion. The school-based factors include policy, attitudes, teacher efficacy, resources, coordination and parental engagement. The contextual factors are spirituality, caste ethnicity, language, economic status, and geographic location. However, there is a varied effect of the interaction between school-based and contextual factors on different groups of CwD. A policy needs to recognize the multiplicity of the interactions between these factors that inhibit the inclusion of varied groups of CwD in ECED programs and address them separately.Keywords: children with a disability, early childhood education and development, framework, inclusion
Procedia PDF Downloads 3593556 Sociological Portrait of the Korean Diaspora in Kazakhstan
Authors: Yefrem Yefremov
Abstract:
In Kazakhstan, there are approximately 100,000 ethnic Koreans with the ethnonym "Koryo Saram". They are part of the global Korean diaspora around the world, deported to Kazakhstan by Stalin’s decree in 1937. Koryo Saram's diasporic identity is a composite of numerous identities based on a shared cultural heritage of the USSR and independent Kazakhstan and has mosaic character. The author has conducted a sociological survey to find out the main features of the identity of the Koryo Saram diaspora. The purpose of this paper is to depict the degree of ethnic, cultural, and diasporic identity of Koryo Saram and which effect on the preserving Korean diaspora in Kazakhstna do they have. The following elements impacting the above-mentioned identities were investigated in the survey: criteria by which Koryo Saram perceive themselves to be Korean, attitude of Koryo Saram to their ethnicity, degree of feeling of ethnocultural similarity between Koreans of Kazakhstan and Koreans of the Republic of Korea, degree of association of Koreans of Kazakhstan with other Koreans living in other CIS countries, degree of practicing Korean traditions Koryo Saram's attitudes towards interethnic marriages. The primary factor in defining the identity among the respondents is the factor of ethnic origin. Nationality is the second most significant component in establishing Koryo Saram’s identity. The maintenance of "Koreanness" of Koryo Sarams in the context of a multiethnic community, particularly in Kazakhstan, is based on genetic elements as well as the preservation of the culture. In conclusion, the high level of preserving Korean identity is being observed in the Korean Diaspora of Kazakhstan.Keywords: diasporic identity, diaspora, ethnic identity, identity markers, korean diaspora, koreans of kazakhstan, koryo saram, multiethnicity
Procedia PDF Downloads 1363555 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1703554 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2923553 Knowledge and Awareness of HIV/AIDS among Male Prisoners in Kuwait
Authors: Saroj Bala Grover, Al Munther Alhasawi, Prem N. Sharma, P. S. N. Menon
Abstract:
Background: Prisoners are considered one of the high-risk populations for the transmission of human immunodeficiency virus (HIV) infection. Targeting this group is one of the strategies to reduce the incidence of acquired immune deficiency syndrome (AIDS) in the community. Subjects and Methods: A cross-sectional study was conducted among male inmates in Kuwait’s prison by administering three sets of questionnaires to assess the level of their knowledge and awareness about the mode of transmission of HIV/AIDS, their risky personal behavior that may lead to HIV infection, and the presence of any negative attitudes and stigmatization towards HIV infected individuals. Results: The study included 123 male inmates, with a mean ± SD age of 30.9 ± 8.4 years. Most participants had good general knowledge (90%) about the mode of transmission of HIV/AIDS, including sharing contaminated syringes, risky personal behaviors such as having unprotected sex and increased number of extramarital relationships (66%), and the avoidance of the regular use of condoms. The younger age group (< 35 years) had more extramarital relationships than those > 35 years (71.4% Vs. 46.4%; p=0.016). There was a perceived attitude of stigmatization among inmates towards HIV-infected persons. Conclusions: This vulnerable group of prisoners, especially young adults, need educational programs to improve knowledge about the transmission of HIV and to correct and change their risky personal behaviors to protect themselves and the community against HIV transmission.Keywords: HIV/AIDS, Kuwait, prisoners, knowledge, awareness, personal behavior, extramarital relationships, safe sex, discrimination, stigmatization
Procedia PDF Downloads 783552 The Impact of Breast Cancer Diagnosis on Omani Women
Authors: H. Al-Awaisi, M. H. Al-Azri, S. Al-Rasbi, M. Al-Moundhri
Abstract:
Breast cancer is the most common cancer among females worldwide. It is also the most common cancer among females in Oman with 100 new breast cancer cases diagnosed every year. It has been found that breast cancer have a devastating effect on women’s life. Women diagnosed with breast cancer might develop negative attitudes towards the illness and their bodies. They might also suffer from psychological ailments such as depression. Despite the evidence on the impact of breast cancer diagnosis on women, there was no study found to explore the impact of breast cancer diagnosis among women in Oman. A phenomenological qualitative study was conducted to explore the impact of breast cancer diagnosis on Omani women. Data was collected through semi-structured individual interviews with 11 Omani women diagnosed with breast cancer. Interviews were transcribed verbatim and data were analyzed thematically. From the data, there are four main themes identified in relation to the impact of cancer diagnosis on Omani women. These are 'shock and disbelieve', 'a death sentence', “uncertain future” and “social stigma”. At the time of interviews, all participants had advanced breast cancer with some participants having metastatic disease. The impact of the word “cancer” had a profound and catastrophic effect on the women and their close relatives. In conclusion, breast cancer diagnosis was shocking and mainly perceived as a death sentence by Omani women with uncertain future and social stigma. Regardless of age, maternal status and education level, it is evident that Omani women participated in this study lacked awareness about breast cancer diagnosis, treatment and prognosis.Keywords: breast cancer, coping, diagnosis, Oman, women
Procedia PDF Downloads 5063551 Building a Model for Information Literacy Education in School Settings
Authors: Tibor Koltay
Abstract:
Among varied new literacies, information literacy is not only the best-known one but displays numerous models and frameworks. Nonetheless, there is still a lack of its complex theoretical model that could be applied to information literacy education in public (K12) education, which often makes use of constructivist approaches. This paper aims to present the main features of such a model. To develop a complex model, the literature and practice of phenomenographic and sociocultural theories, as well as discourse analytical approaches to information literacy, have been reviewed. Besides these constructivist and expressive based educational approaches, the new model is intended to include the innovation of coupling them with a cognitive model that takes developing informational and operational knowledge into account. The convergences between different literacies (information literacy, media literacy, media and information literacy, and data literacy) were taken into account, as well. The model will also make use of a three-country survey that examined secondary school teachers’ attitudes to information literacy. The results of this survey show that only a part of the respondents feel properly prepared to teach information literacy courses, and think that they can teach information literacy skills by themselves, while they see a librarian as an expert in educating information literacy. The use of the resulting model is not restricted to enhancing theory. It is meant to raise the level of awareness about information literacy and related literacies, and the next phase of the model’s development will be a pilot study that verifies the usefulness of the methodology for practical information literacy education in selected Hungarian secondary schools.Keywords: communication, data literacy, discourse analysis, information literacy education, media and information literacy media literacy, phenomenography, public education, sociocultural theory
Procedia PDF Downloads 1473550 Music for Peace, a Model for Socialization
Authors: Mina Fenercioglu
Abstract:
This study discusses a Turkish music education model similar to El Sistema. The Music for Peace (Baris icin Muzik) program, founded in 2005 by an idealist humanitarian in Istanbul, started as a pilot project with accordion and then with flute in ensembles at the Ulubatlı Hasan Primary School where mostly underprivileged children attend. The program gives complimentary music lessons particularly to deprived children, who at the beginning were prone to crime. With music education, the attitudes of the children turn to a positive aspect. The aim of this initiative provides social and cultural awareness, which serves the same mission as the world known El Sistema. In 2009, the Music for Peace project received Deutsche Bank Urban Age Award, which is a prize presented to enterprises that improve the quality of life in urban environment. Since 2010, the Music for Peace continues the symphonic music education at its own place. In 2011, Music for Peace gained foundation status, and started to accept donations as musical instruments for children who attend the courses. On July 2013, IKSV (Istanbul Culture and Arts Foundation) became the institutional partner of Music for Peace Foundation and in June 2014, the foundation signed up to join El Sistema’s global program. Now in 2015, the foundation has three ensembles: the Music for Peace Orchestra, which consists of two orchestras practicing and performing in different levels; the Music for Peace Chorus, which has joined Istanbul International Polyphonic Choruses Festival; and the recently established Music for Peace Brass Ensemble.Keywords: El Sistema, music education, music for peace, socialization
Procedia PDF Downloads 4213549 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples
Authors: Sedat Simsek, Tugay Arat
Abstract:
Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.Keywords: education, communication technologies, role of technology, teaching
Procedia PDF Downloads 3033548 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 1553547 Linking Supervisor’s Goal Orientation to Post-Training Supportive Behaviors: The Mediating Role of Interest in the Development of Subordinates Skills
Authors: Martin Lauzier, Benjamin Lafreniere-Carrier, Nathalie Delobbe
Abstract:
Supervisor support is one of the main levers to foster transfer of training. Although past and current studies voice its effects, few have sought to identify the factors that may explain why supervisors offer support to their subordinates when they return from training. Based on Goal Orientation Theory and following the principles of supportive supervision, this study aims to improve our understanding of the factors that influence supervisors’ involvement in the transfer process. More specifically, this research seeks to verify the influence of supervisors’ goal orientation on the adoption of post-training support behaviors. This study also assesses the mediating role of the supervisors’ interest in subordinates’ development on this first relationship. Conducted in two organizations (Canadian: N₁ = 292; Belgian: N₂ = 80), the results of this study revealed three main findings. First, supervisors’ who adopt learning mastery goal orientation also tend to adopt more post-training supportive behaviors. Secondly, regression analyses (using the bootstrap method) show that supervisors' interest in developing their subordinates’ skills mediate the relationship between supervisors’ goal orientation and post-training supportive behaviors. Thirdly, the observed mediation effects are consistent in both samples, regardless of supervisors’ gender or age. Overall, this research is part of the limited number of studies that have focused on the determining factors supervisors’ involvement in the learning transfer process.Keywords: supervisor support, transfer of training, goal orientation, interest in the development of subordinates’ skills
Procedia PDF Downloads 1873546 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast
Authors: David Ofosu-Hamilton, John K. E. Edumadze
Abstract:
Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.Keywords: assessment, blended, cloud, paperless
Procedia PDF Downloads 2483545 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 313544 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1313543 Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback
Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield
Abstract:
Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.Keywords: mindset(s), failure, intelligence, parental feedback, parents
Procedia PDF Downloads 1403542 Yawning Computing Using Bayesian Networks
Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube
Abstract:
Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms
Procedia PDF Downloads 4553541 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 1903540 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders
Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin
Abstract:
Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge
Procedia PDF Downloads 1733539 Reconceptualising Faculty Teaching Competence: The Role of Agency during the Pandemic
Authors: Ida Fatimawati Adi Badiozaman, Augustus Raymond Segar
Abstract:
The Covid-19 pandemic transformed teaching contexts at an unprecedented level. Although studies have focused mainly on its impact on students, little is known about how emergency online teaching affects faculty members in higher education. Given that the pandemic has robbed teachers of opportunities for adequate preparation, it is vital to understand how teaching competencies were perceived in the crisis-response transition to online teaching and learning (OTL). Therefore, the study explores how academics perceive their readiness for OTL and what competencies were perceived to be central. Therefore, through a mixed-methods design, the study first explores through a survey how academics perceive their readiness for OTL and what competencies were perceived to be central. Emerging trends from the quantitative data of 330 academics (three public and three private Higher learning institutions) led to the formulation of interview guides for the subsequent qualitative phase. The authors use critical sensemaking (CSM) to analyse interviews with twenty-two teachers (n = 22) (three public; three private HEs) toward understanding the interconnected layers of influences they draw from as they make sense of their teaching competence. The sensemaking process reframed competence and readiness in that agentic competency emerged as crucial in shaping resilience and adaptability during the transition to OTL. The findings also highlight professional learningcriticalto teacher competence: course design, communication, time management, technological competence, and identity (re)construction. The findings highlight opportunities for strategic orientation to change during crisis. Implications for pedagogy and policy are discussed.Keywords: online teaching, pedagogical competence, agentic competence, agency, technological competence
Procedia PDF Downloads 813538 Reading Strategies of Generation X and Y: A Survey on Learners' Skills and Preferences
Authors: Kateriina Rannula, Elle Sõrmus, Siret Piirsalu
Abstract:
Mixed generation classroom is a phenomenon that current higher education establishments are faced with daily trying to meet the needs of modern labor market with its emphasis on lifelong learning and retraining. Representatives of mainly X and Y generations in one classroom acquiring higher education is a challenge to lecturers considering all the characteristics that differ one generation from another. The importance of outlining different strategies and considering the needs of the students lies in the necessity for everyone to acquire the maximum of the provided knowledge as well as to understand each other to study together in one classroom and successfully cooperate in future workplaces. In addition to different generations, there are also learners with different native languages which have an impact on reading and understanding texts in third languages, including possible translation. Current research aims to investigate, describe and compare reading strategies among the representatives of generation X and Y. Hypotheses were formulated - representatives of generation X and Y use different reading strategies which is also different among first and third year students of the before mentioned generations. Current study is an empirical, qualitative study. To achieve the aim of the research, relevant literature was analyzed and a semi-structured questionnaire conducted among the first and third year students of Tallinn Health Care College. Questionnaire consisted of 25 statements on the text reading strategies, 3 multiple choice questions on preferences considering the design and medium of the text, and three open questions on the translation process when working with a text in student’s third language. The results of the questionnaire were categorized, analyzed and compared. Both, generation X and Y described their reading strategies to be 'scanning' and 'surfing'. Compared to generation X, first year generation Y learners valued interactivity and nonlinear texts. Students frequently used strategies of skimming, scanning, translating and highlighting together with relevant-thinking and assistance-seeking. Meanwhile, the third-year generation Y students no longer frequently used translating, resourcing and highlighting while Generation X learners still incorporated these strategies. Knowing about different needs of the generations currently inside the classrooms and on the labor market enables us with tools to provide sustainable education and grants the society a work force that is more flexible and able to move between professions. Future research should be conducted in order to investigate the amount of learning and strategy- adoption between generations. As for reading, main suggestions arising from the research are as follows: make a variety of materials available to students; allow them to select what they want to read and try to make those materials visually attractive, relevant, and appropriately challenging for learners considering the differences of generations.Keywords: generation X, generation Y, learning strategies, reading strategies
Procedia PDF Downloads 1803537 A Study of Transferable Skills for Work-Based Learning (WBL) Assessment
Authors: Abdool Qaiyum Mohabuth
Abstract:
Transferrable skills are learnt abilities which are mainly acquired when experiencing work. University students have the opportunities to develop the knowledge and aptitude at work when they undertake WBL placement during their studies. There is a range of transferrable skills which students may acquire at their placement settings. Several studies have tried to identify a core set of transferrable skills which students can acquire at their placement settings. However, the different lists proposed have often been criticised for being exhaustive and duplicative. In addition, assessing the achievement of students on practice learning based on the transferrable skills is regarded as being complex and tedious due to the variability of placement settings. No attempt has been made in investigating whether these skills are assessable at practice settings. This study seeks to define a set of generic transferrable skills that can be assessed during WBL practice. Quantitative technique was used involving the design of two questionnaires. One was administered to University of Mauritius students who have undertaken WBL practice and the other was slightly modified, destined to mentors who have supervised and assessed students at placement settings. To obtain a good representation of the student’s population, the sample considered was stratified over four Faculties. As for the mentors, probability sampling was considered. Findings revealed that transferrable skills may be subject to formal assessment at practice settings. Hypothesis tested indicate that there was no significant difference between students and mentors as regards to the application of transferrable skills for formal assessment. A list of core transferrable skills that are assessable at any practice settings has been defined after taking into account their degree of being generic, extent of acquisition at work settings and their consideration for formal assessment. Both students and mentors assert that these transferrable skills are accessible at work settings and require commitment and energy to be acquired successfully.Keywords: knowledge, skills, assessment, placement, mentors
Procedia PDF Downloads 2773536 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 3223535 Development and Validation of Sense of Humor Questionnaire in China
Authors: Yunshi Peng, Shanshan Gao, Sang Qin
Abstract:
The sense of humor is an integration of cognition, emotion and behavioral tendencies in the process of expressing humor. Previous studies evidenced the positive impact of sense of humor on promoting mental health. However, very few studies investigated this with Chinese populations. The absence of a validated questionnaire limits empirical research on sense of humor in China. This study aimed to develop a Chinese instrument to examine the sense of humor among college students in China. A pool of 72 items was developed by conducting a series of qualitative methods including open-ended questionnaire, individual interviews and literature analysis, followed by an expert rating. A total of 500 college students were recruited from 7 provinces in China to complete all 72 items. The factor structure of sense of humor was established and 25 items were eventually formed by utilizing the exploratory factor analyses (EFA). The questionnaire composed 4 subscales: humor comprehension, humor creativity, attitudes towards humor and optimism level. Confirmatory factor analyses (CFA) from a follow-up study with a different sample of 1200 colleges students showed good model fit. All subscales and the overall questionnaire display satisfying internal consistency. Correlations with criterion variables demonstrated good convergent and discriminant validity. The sense of humor questionnaire is a psychometrically-sound instrument for the population of college students in China. This is applicable for future studies to identify the structure of sense of humor and evaluate the levels of humor for individuals.Keywords: college students, EFA and CFA, questionnaire, sense of humor
Procedia PDF Downloads 3443534 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2293533 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment
Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun
Abstract:
To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education
Procedia PDF Downloads 373