Search results for: immobilization mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3279

Search results for: immobilization mechanism

2829 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene

Authors: Mohamad Mohsen Yavarizadeh

Abstract:

Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.

Keywords: molecular weight distribution, polystyrene, toughness, homopolymer

Procedia PDF Downloads 443
2828 The Effect of Visfatin on Pregnant Mouse Myometrial Contractility in vitro

Authors: Seham Alsaif, Susan Wray

Abstract:

Obesity is a worldwide disorder influencing women’s health and childbearing. There is a close relation between obesity and pregnancy related complications. Dyslipidemia and adipokine dysregulation are core environmental changes that may mechanistically link these complications with obesity in pregnant women. We have previously found that visfatin has a relaxant effect on mouse, rat and human myometrial contractility. We hypothesised that visfatin inhibits mouse myometrial contractility through the NAD+ pathway. This study was designed to examine the mechanism of action of visfatin on myometrial contractility. To examine the NAD+ pathway, FK866 which is a potent inhibitor of NAD+ biosynthesis was used. Methods: Myometrial strips from term pregnant mice were dissected, superfused with physiological saline and the effects of visfatin (10nM) on oxytocin-induced contractions (0.5nM) alone and after the infusion of FK866 (10uM) were studied. After regular contractions were established, contractility was examined for control (100%) and test response at 37 °C for 10 min each. Results: FK866 was found to inhibit the effect of visfatin on myometrial contractility (the AUC increased from 89±2% of control, P=0.0009 for visfatin alone to 97±4% of control, P>0.05 for visfatin combined with FK866, n=8). In conclusion, NAD+ pathway appears to be involved in the mechanism of action of visfatin on mouse myometrium. This could have a role in making new targets to prevent obesity-related complications.

Keywords: myometrium, obesity, oxytocin, pregnancy, visfatin

Procedia PDF Downloads 177
2827 The Political Economy of Conservation at Bhitarkanika Wild Life Sanctuary, India: Conflicts, Sustainability, and Development

Authors: Diptimayee Nayak, V. Upadhyay

Abstract:

This paper posits the attempt of conservation and the idea of protected areas from the Marxian primitive accumulation to the politics of sustainability. Using field survey data and secondary literature, this paper analyses an Indian wildlife sanctuary, the Bhitarkanika, Odisha and finds how the hegemony of power among different management regimes attempted for conservation and the present protected area management regime attempted to imbibe the policy of ecotourism for achieving sustainability. The paper contends that the current policy of ecotourism in protected areas acts as a veil for the local deprived people, to avoid many legal conflicts like property rights, livelihood, and man-wildlife issues. Moreover, opening the scope to accumulate on the part of tour operators, the policy of ecotourism establishes a nexus between the profit holders/tour operators (the capitalists) and the power hegemony on the part of management authorities. The sustainability attempt of ecotourism may lead to private benefits maximising the profit accumulation and can expand and continue, showing the bulk of employment generation of local people at petty odd jobs, grabbing a lion share! Positing ecotourism as a capitalist project as against the general assumption of one of the drivers of sustainable development, the paper shows that ecotourism in practice may end up ruining the very social-environmental set up, leading to unsustainability related to waste management, equality, culture, relationship and above all polarised private accumulators in absence of sound mechanism. The paper ends with the caveat that while shopping for neoliberal conservation, the conservators found ecotourism as a product without finalising the hallmark of mechanism/ institutions with appropriate modus operandii to check/guard the quality assurance/standard of ecotourism for sustainability. The paper proposes sound structural and institutional mechanism of ecotourism to be developed to harness sustainability in the local economy as well as in conservation.

Keywords: conservation, ecotourism, Marxian capitalism, protected areas, sustainability

Procedia PDF Downloads 173
2826 Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine

Authors: Samir Hmaimou, Marouane Ait Lahcen, Mohamed Adardour, Mohamed Maatallah, Abdesselam Baouid

Abstract:

Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control.

Keywords: cycloaddition reaction, regioselectivity, mechanism reaction, NMR analysis

Procedia PDF Downloads 23
2825 Seismic Active Zones and Mechanism of Earthquakes in Northern Egypt

Authors: Awad Hassoup, Sayed Abdallah, Mohamed Dahy

Abstract:

Northern Egypt is known to be seismically active from the past several thousand years, based on the historical records and documents of eyewitnesses on one- hand and instrumental records on the other hand. Instrumental, historical and pre- historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The interaction of the African, Arabian, Eurasian plates and Sinai sub-plate is the main factor behind the seismicity of northern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south- west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez- Cairo- Alexandria trend. On the other hand, the focal mechanisms of some earthquakes occurred inside the studied area and having small to moderate size show a variety of patterns. The most predominant type is normal faulting.

Keywords: Northern Egypt, seismic active zone, seismicity, focal mechanism

Procedia PDF Downloads 436
2824 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 33
2823 Hyaluronic Acid as Potential Excipient for Buccal Delivery

Authors: Flavia Laffleur

Abstract:

Summary: Biomaterials have gained immense interest in the pharmaceutical research in the last decades. Hyaluronic acid a carbohydrate and mucopolysaccharide was chemically modified in order to achieve and establish a promising platform for buccal drug delivery. Aim: Novel biomaterial was tested for its potential for buccal drug delivery. Background: Polysaccharide hyaluronic acid (HA) was chemically modified with cysteine ethyl ether (CYS). By immobilization of the thiol-bearing ligand on the polymeric backbone the thiolated bioconjugate HA-CYS was obtained. Methodology: Mucoadhesive, permeation enhancing and stability potential as well as mechanical, physicochemical properties further mucoadhesive strength, swelling index and residence time were investigated. The developed thiolated bioconjugate displayed enhanced mucoadhesiveness on buccal mucosa as well as permeation behavior and polymer stability. The near neutral pH and negative cytotoxicity studies indicated their non-irritability and biocompatible nature with biological tissues. Further, the model drug sulforhodamine 101 was incorporated to determine its drug release profiles. Results: The synthesized thiomer showed no toxicity. The mucoadhesion of thiolated hyaluronic acid on buccal mucosa was significantly improved in comparison to unmodified one. The biomaterial showed 2.5-fold higher stability in polymer structure. The release of sulforhodamine in the presence of thiolated hyaluronic acid was 2.3-fold increased compared to hyaluronic acid. Conclusion: Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. So far, hyaluronic acid was not evaluated for buccal drug delivery.

Keywords: buccal delivery, hyaluronic acid, mucoadhesion, thiomers

Procedia PDF Downloads 503
2822 Studying the Load Sharing and Failure Mechanism of Hybrid Composite Joints Using Experiment and Finite Element Modeling

Authors: Seyyed Mohammad Hasheminia, Heoung Jae Chun, Jong Chan Park, Hong Suk Chang

Abstract:

Composite joints have been getting attention recently due to their high specific mechanical strength to weight ratio that is crucial for structures such as aircrafts and automobiles. In this study on hybrid joints, quasi-static experiments and finite element analysis were performed to investigate the failure mechanism of hybrid composite joint with respect to the joint properties such as the adhesive material, clamping force, and joint geometry. The outcomes demonstrated that the stiffness of the adhesive is the most imperative design parameter. In this investigation, two adhesives with various stiffness values were utilized. Regarding the joints utilizing the adhesive with the lower stiffness modulus, it was observed that the load was exchanged promptly through the adhesive since it was shared more proficiently between the bolt and adhesive. This phenomenon permitted the hybrid joints with low-modulus adhesive to support more prominent loads before failure when contrasted with the joints that utilize the stiffer adhesive. In the next step, the stress share between the bond and bolt as a function of various design parameters was studied using a finite element model in which it was understood that the geometrical parameters such as joint overlap and width have a significant influence on the load sharing between the bolt and the adhesive.

Keywords: composite joints, composite materials, hybrid joints, single-lap joint

Procedia PDF Downloads 406
2821 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma

Abstract:

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding

Procedia PDF Downloads 247
2820 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure

Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff

Abstract:

Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.

Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics

Procedia PDF Downloads 527
2819 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 139
2818 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images

Authors: Tian Zhang

Abstract:

Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.

Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment

Procedia PDF Downloads 111
2817 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 145
2816 Removal of Lead (Pb) by the Microorganism Isolated from the Effluent of Lead Acid Battery Scrap

Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati

Abstract:

The demand for the lead (Pb) in the battery industry has been growing for last twenty years. On an average about 2.35 million tons of lead is used in the battery industry. According to the survey of supply and demand battery industry is using 75% of lead produced every year. Due to the increase in battery scrap, secondary lead production has been increasing in this decade. Europe and USA together account for 75% of the world’s secondary lead production. The effluent from used battery scrap consists of high concentrations of lead. Unauthorized disposal of spent batteries, which contain intolerable concentration of lead, into landfills or municipal water canals causes release of Pb into the environment. Lead is one of the toxic heavy metals that have large damaging effects on the human health. Due to its persistence and toxicity, the presence of Pb in drinking water is considered as a special concern. Accumulation of Pb in the human body for long period of time can result in the malfunctioning of some organs. Many technologies have been developed for the removal of lead using microorganisms. In this paper, effluent was taken from the spent battery scrap and was characterized by inductively coupled plasma atomic emission spectrometer. Microorganisms play an important role in removal of lead from the contaminated sites. So, the bacteria were isolated from the effluent. Optimum conditions for the microbial growth and applied for the lead removal. These bacterial cells were immobilized and used for the removal of Pb from the known concentration of metal solution. Scanning electron microscopic (SEM) studies were shown that the Pb was efficiently adsorbed by the immobilized bacteria. From the results of Atomic Absorption Spectroscopy (AAS), 83.40 percentage of Pb was removed in a batch culture.

Keywords: adsorption, effluent, immobilization, lead (Pb)

Procedia PDF Downloads 457
2815 Strategic Fit between Higher Education Funding and the National Development Goals in Kazakhstan

Authors: Ali Ait Si Mhamed, Rita Kasa, Hans Vossensteyn

Abstract:

Kazakhstan is the eight largest country on the globe, in terms of the territory, it is rich in natural resources and is developing dynamically. Kazakhstan strives to become one of the top 30 global economies by 2050. This goal preconditions intensive reforms in all sectors of economy, including higher education. This paper focuses on the higher education funding reforms that take place in Kazakhstan and their alignment with the strategic goals of national development. Currently, the government funds higher education costs for only a limited number of students while the majority of students pay full cost covering tuition fees. Only students with high examination scores at the end of the secondary education are eligible to be admitted to publically funded study places in higher education. While this merit-based higher education funding model is overall well-received in the country, there is also a discourse calling to change the existing approach of higher education funding. This paper draws on interviews with national policy makers and leadership at institutions of higher education in Kazakhstan collected during 2016. It seeks to answer a question about how well the current higher education funding mechanism is aligned with the strategic development goals in higher education. The paper discusses how stakeholders see the fit between the current higher education funding mechanism and the ability of higher education institutions to achieve the aims of national strategic development.

Keywords: higher education reform, higher education funding, higher education policy, Kazakhstan

Procedia PDF Downloads 288
2814 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries

Authors: Xi Wang, Yoshio Bando

Abstract:

Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism

Procedia PDF Downloads 352
2813 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge

Authors: Mohammad Mashud, S. M. Nahid Hasan

Abstract:

The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.

Keywords: airfoil, momentum injection, flap, pressure distribution

Procedia PDF Downloads 140
2812 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 354
2811 Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology

Authors: Harika Atmaca, Emir Bozkurt, Latife Merve Oktay, Selim Uzunoglu, Ruchan Uslu, Burçak Karaca

Abstract:

Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.

Keywords: trabectedin, prostate cancer, omic protein expression profile, apoptosis

Procedia PDF Downloads 443
2810 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 190
2809 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations

Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari

Abstract:

The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.

Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation

Procedia PDF Downloads 460
2808 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 188
2807 Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, H. B. Mehta

Abstract:

Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10-5 bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP.

Keywords: CLPHP, gravity effect, start up, two-phase flow

Procedia PDF Downloads 263
2806 What Happens When We Try to Bridge the Science-Practice Gap? An Example from the Brazilian Native Vegetation Protection Law

Authors: Alice Brites, Gerd Sparovek, Jean Paul Metzger, Ricardo Rodrigues

Abstract:

The segregation between science and policy in decision making process hinders nature conservation efforts worldwide. Scientists have been criticized for not producing information that leads to effective solutions for environmental problems. In an attempt to bridge this gap between science and practice, we conducted a project aimed at supporting the implementation of the Brazilian Native Vegetation Protection Law (NVPL) implementation in São Paulo State (SP), Brazil. To do so, we conducted multiple open meetings with the stakeholders involved in this discussion. Throughout this process, we raised stakeholders' demands for scientific information and brought feedbacks about our findings. However, our main scientific advice was not taken into account during the NVPL implementation in SP. The NVPL has a mechanism that exempts landholders who converted native vegetation without offending the legislation in place at the time of the conversion from restoration requirements. We found out that there were no accurate spatialized data for native vegetation cover before the 1960s. Thus, the initial benchmark for the mechanism application should be the 1965 Brazilian Forest Act. Even so, SP kept the 1934 Brazilian Forest Act as the initial legal benchmark for the law application. This decision implies the use of a probabilistic native vegetation map that has uncertainty and subjectivity as its intrinsic characteristics, thus its use can lead to legal queries, corruption, and an unfair benefit application. But why this decision was made even after the scientific advice was vastly divulgated? We raised some possible reasons to explain it. First, the decision was made during a government transition, showing that circumstantial political events can overshadow scientific arguments. Second, the debate about the NVPL in SP was not pacified and powerful stakeholders could benefit from the confusion created by this decision. Finally, the native vegetation protection mechanism is a complex issue, with many technical aspects that can be hard to understand for a non-specialized courtroom, such as the one that made the final decision at SP. This example shows that science and decision-makers still have a long way ahead to improve their way to interact and that science needs to find its way to be heard above the political buzz.

Keywords: Brazil, forest act, science-based dialogue, science-policy interface

Procedia PDF Downloads 122
2805 Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime

Authors: Ashok Kumar, Sarita Sahu, H. N. Bar

Abstract:

Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking.

Keywords: dynamic strain ageing, hardening, low cycle fatigue, softening

Procedia PDF Downloads 303
2804 Pufferfish Skin Collagens and Their Role in Inflation

Authors: Kirti, Samanta Sekhar Khora

Abstract:

Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes.

Keywords: collagen, histology, inflation, pufferfish, scanning electron microscopy, Small-Angle X-Ray Scattering (SAXS), transmission electron microscopy

Procedia PDF Downloads 319
2803 Old Community Spatial Integration: Discussion on the Mechanism of Aging Space System Replacement

Authors: Wan-I Chen, Tsung-I Pai

Abstract:

Future the society aging of population will create the social problem has not had the good mechanism solution in the Asian country, especially in Taiwan. In the future ten year the people in Taiwan must facing the condition which is localization aging social problem. In this situation, how to use the spatial in eco way to development space use to solve the old age spatial demand is the way which might develop in the future Taiwan society. Over the next 10 years, taking care of the aging people will become part of the social problem of aging phenomenon. The research concentrate in the feasibility of spatial substitution, secondary use of spatial might solve out of spatial problem for aging people. In order to prove the space usable, the research required to review the project with the support system and infill system for space experiment, by using network grid way. That defined community level of space elements location relationship, make new definitions of space and return to cooperation. Research to innovation in the the appraisal space causes the possibility, by spatial replacement way solution on spatial insufficient suitable condition. To evaluation community spatial by using the support system and infill system in order to see possibilities of use in replacement inner space and modular architecture into housing. The study is discovering the solution on the Eco way to develop space use to figure out the old age spatial demand.

Keywords: sustainable use, space conversion, integration, replacement


Procedia PDF Downloads 176
2802 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: radiobiological mechanism, chemical phase, DSB formation, Petri nets

Procedia PDF Downloads 314
2801 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an interest in better understanding the mechanism of particulate formation during combustion since such is responsible for emission of undesired inorganic elements that directly impact the atmospheric pollution level. Fine and ultrafine particulates have tendency to escape the flue gas cleaning devices to the atmosphere. They also preferentially collect on surfaces in power systems resulting in ascending in corrosion inclination, descending in the heat transfer thermal unit, and severe impact on human health. This adverseness manifests particularly in the regions of world where coal is the dominated source of energy for consumption. This study highlights the behavior of calcium transformation as mineral grains verses organically associated inorganic components during pulverized coal combustion. The influence of existing type of calcium on the coarse, fine and ultrafine mode formation mechanisms is also presented. The impact of two sub-bituminous coals on particle size and calcium composition evolution during combustion is to be assessed. Three mixed blends named Blends 1, 2, and 3 are selected according to the ration of coal A to coal B by weight. Calcium percentage in original coal increases as going from Blend 1 to 3. A mathematical model and a new approach of describing constituent distribution are proposed. Analysis of experiments of calcium distribution in ash is also modeled using Poisson distribution. A novel parameter, called elemental index λ, is introduced as a measuring factor of element distribution. Results show that calcium in ash that originally in coal as mineral grains has index of 17, whereas organically associated calcium transformed to fly ash shown to be best described when elemental index λ is 7. As an alkaline-earth element, calcium is considered the fundamental element responsible for boiler deficiency since it is the major player in the mechanism of ash slagging process. The mechanism of particle size distribution and mineral species of ash particles are presented using CCSEM and size-segregated ash characteristics. Conclusions are drawn from the analysis of pulverized coal ash generated from a utility-scale boiler.

Keywords: coal combustion, inorganic element, calcium evolution, fluid dynamics

Procedia PDF Downloads 337
2800 Unveiling the Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation: A Computational Study

Authors: Rehin Sulay, Anandhu Krishna, Jintumol Mathew, Vibin Ipe Thomas

Abstract:

N-Nitrosodimethyl amine, the simplest member of the N-Nitrosoamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH) has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazone (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation.In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine –NH2 group followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. Though there exist a N=N bonds in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process(42kcal/mol).Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

Keywords: reaction mechanism, ozonation, substituted hydrazine, transition state

Procedia PDF Downloads 83