Search results for: hormone receptor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 735

Search results for: hormone receptor

285 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings

Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel

Abstract:

Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.

Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize

Procedia PDF Downloads 215
284 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer

Authors: Leila Anoosheh

Abstract:

Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.

Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6

Procedia PDF Downloads 431
283 Role of Zinc in Catch-Up Growth of Low-Birth Weight Neonates

Authors: M. A. Abdel-Wahed, Nayera Elmorsi Hassan, Safaa Shafik Imam, Ola G. El-Farghali, Khadija M. Alian

Abstract:

Low-birth-weight is a challenging public health problem. Aim: to clarify role of zinc on enhancing catch-up growth of low-birth-weight and find out a proposed relationship between zinc effect on growth and the main growth hormone mediator, IGF-1. Methods: Study is a double-blind-randomized-placebo-controlled trial conducted on low-birth-weight-neonates delivered at Ain Shams University Maternity Hospital. It comprised 200 Low-birth-weight-neonates selected from those admitted to NICU. Neonates were randomly allocated into one of the following two groups: group I: low-birth-weight; AGA or SGA on oral zinc therapy at dose of 10 mg/day; group II: Low-birth-weight; AGA or SGA on placebo. Anthropometric measurements were taken including birth weight, length; head, waist, chest, mid-upper arm circumferences, triceps and sub-scapular skin-fold thicknesses. Results: At 12-month-old follow-up visit, mean weight, length; head (HC), waist, chest, mid-upper arm circumferences and triceps; also, infant’s proportions had values ≥ 10th percentile for weight, length and HC were significantly higher among infants of group I when compared to those of group II. Oral zinc therapy was associated with 24.88%, 25.98% and 19.6% higher proportion of values ≥ 10th percentile regarding weight, length and HC at 12-month-old visit, respectively [NNT = 4, 4 and 5, respectively]. Median IGF-1 levels measured at 6 months were significantly higher in group I compared to group II (median (range): 90 (19 – 130) ng/ml vs. 74 (21 – 130) ng/ml, respectively, p=0.023). Conclusion: Oral zinc therapy in low-birth-weight neonates was associated with significantly more catch-up growth at 12-months-old and significantly higher serum IGF-1 at 6-month-old.

Keywords: low-birth-weight, zinc, catch-up growth, neonates

Procedia PDF Downloads 416
282 The impact of Breast Cancer Polymorphism on Breast Cancer

Authors: Roudabeh Vakil Monfared, Farhad Mashayekhi

Abstract:

Breast cancer is the most common malignancy type among women with about 1 million new cases each year. The immune system plays an important role in the breast cancer development. OX40L (also known as TNFSF4), a membrane protein, which is a member of the tumor necrosis factor super family binds to its receptor OX40 and this co-stimulation has a crucial role in T-cell proliferation, survival and cytokine release. Due to the importance of the T-cells in anti-tumor activities of OX40L we studied the association of rs3850641 (T→C) polymorphism of OX40L gene with breast cancer. The study included 123 women with breast cancer and 126 healthy volunteers with no signs of cancer. Genomic DNA was extracted from blood leucocytes. Genotype and allele frequencies were determined in patients and control cases with the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the analysis was performed by Med Calc. The prevalence of genotype frequencies of TT, CT and CC were 60.9%, 30.08% and 8.9 % in patients with breast cancer and 74.6 %, 18.25 % and 7.14 % in healthy volunteers while the T and C allelic frequency was 76.01% and 23.98 % in patients and 83.73% and 16.26% in healthy controls. Respectively Statistical analysis has shown no significant difference from the comparison of either genotype (P=0.06). According to these results, the rs3850641 SNP has no association with the susceptibility of breast cancer in a population in northern Iran. However, further studies in larger populations including other genetic and environmental factors are required to achieve conclusion.

Keywords: OX40L, gene, polymorphism, breast cancer

Procedia PDF Downloads 535
281 SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance

Authors: Debasish Pradhan, Shaktiprasad Pradhan, Rakesh Kumar Pradhan, Gitanjali Tripathy

Abstract:

Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: breast cancer, multidrug resistance, SOCS1 gene, MDR1 gene, RNA interference

Procedia PDF Downloads 356
280 Green Synthesis of Silver Nanoparticles with Aqueous Extract of Moringa oleifera Lam Leaves and Its Ameliorative Effect on Benign Prostatic Hyperplasia in Wistar Rat

Authors: Rotimi Larayetana, Yahaya Abdulrazaq, Oladunni O. Falola, Abayomi Ajayi

Abstract:

The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) with the aqueous extract of Moringa oleifera Lam (M oleifera) leaves and determine its effects on benign prostatic hyperplasia in Wistar rats. Silver nitrate (AgNO₃) solution was reduced using the aqueous extract of Moringa oleifera Lam leaves, the resultant biogenic AgNPs were characterized by Fourier transformed infrared spectrophotometric, SEM, TEM and X-ray diffraction analysis. Animal experiments involved thirty (30) adult male Wistar rats randomly divided into five groups (A to E; n ₌ 5). Group A received only subcutaneous injection of olive oil daily while the other groups got 3 mg/kg/daily of testosterone propionate (TP) subcutaneously plus 50 mg/kg/daily of AgNPs intraperitoneally (B), 3 mg/kg/daily of TP plus 25 mg/kg/daily of AgNPs (C), 3 mg/kg/daily of TP only (D) and 25 mg/kg/daily of AgNPs only (E). The animals were sacrificed after 14 days, and the prostate gland, liver, and kidney were processed for histological analysis. Phytochemical screening and GC-MS analysis were performed to determine the composition of the M oleifera extract used. Biogenic AgNPs with an average diameter of 23 nm were synthesized. Biogenic AgNPs ameliorated hormone-induced prostate enlargement, and the inhibition of prostatic hypertrophy could be due to the presence of a significant amount of plant fatty acids and phytosterols in the aqueous extract of M oleifera extract. However, the administration of biogenic AgNPs at higher doses impacted negatively on the cytoarchitecture of the liver. Green synthesis of AgNPs with the aqueous extract of Moringa oleifera might be beneficial for the treatment of BPH.

Keywords: benign prostatic hyperplasia, biogenic synthesis, Moringa oleifera, silver nanoparticles, testosterone

Procedia PDF Downloads 95
279 Effects of High Intensity Interval vs. Low Intensity Continuous Training on LXRβ, ABCG5 and ABCG8 Genes Expression in Male Wistar Rats

Authors: Sdiqeh Jalali, M. R. Khazdair

Abstract:

Liver X receptors (LXR) have an essential role in the regulation of cholesterol metabolism, and their activation increase ABCG5 and ABCG8 genes expression for the improvement of cholesterol excretion from the body during reverse cholesterol transport (RCT). The aim of this study was to investigate the effects of high-intensity interval (HIT) and low intensity continuous (LIT) trainings on gene expression of these substances after a high-fat diet in Wistar rats. Materials and Methods: Fifteen male Wistar rats were divided into 3 groups: control group (n = 5), HIT exercise group (n = 5) and LIT exercise group (n = 5). All groups used a high-fat diet for 13 weeks, and the HIT and LIT groups performed the specific training program. The expression of LXRβ, ABCG5, and ABCG8 genes was measured after the training period. Findings: Data analysis showed significantly higher levels of LXRβ, ABCG5, and ABCG8 gene expression in HIT and LIT groups compared to the control group (P ≤ 0.05). Conclusion: HIT and LIT trainings after a high-fat diet have beneficial effects on RCT that prevent heart attack. Also, HIT training may have a greater effect on cholesterol excretion during the reverse cholesterol transport mechanism than LIT.

Keywords: liver X receptor, atherosclerosis, interval training, endurance training

Procedia PDF Downloads 117
278 Tocilizumab Suppresses the Pro-carcinogenic Effects of Breast Cancer-associated Fibroblasts Through Inhibition of the STAT3/AUF1 Pathway

Authors: Naif Al-Jomah, Falah H Al-Mohanna, Abdelilah Aboussekhra

Abstract:

Active breast cancer-associated fibroblasts (CAFs), the most influential cells in breast tumor microenvironment, express/secrete high levels of the proinvasive/metastatic interleukin-6 (IL-6). Therefore, we have tested here the effect of the IL-6 receptor (IL-6R) inhibitor tocilizumab (TCZ; Actemra) on different active breast CAFs. We have shown that TCZ potently and persistently suppresses the expression of various CAF biomarkers, namely α-SMA, SDF-1 as well as the STAT3 pathway and its downstream target AUF1. TCZ also inhibited the proliferation, migration and invasion abilities of active breast CAF cells. Additionally, TCZ repressed the ability of CAF cells in promoting epithelial-to-mesenchymal transition, and enhancing the migratory/invasive and proliferative capacities of breast cancer cells in vitro. Importantly, these findings were confirmed in orthotopic humanized breast tumors in mice. Furthermore, TCZ suppressed the expression of the pro-angiogenic factor VEGF-A and its transactivator HIF-1α in CAF cells, and consequently inhibited the angiogenic-promoting effect of active CAFs both in vitro and in orthotopic tumor xenografts. These results indicate that inhibition of the IL-6/STAT3/AUF1 pathway by TCZ can normalize active breast CAFs and suppress their paracrine pro-carcinogenic effects, which paves the way toward development of specific CAF-targeting therapy, badly needed for more efficient breast cancer treatments.

Keywords: angiogenesis, interleukin-6, paracrine, cancer-associated fibroblasts

Procedia PDF Downloads 97
277 The Effect of Melatonin on Acute Liver Injury: Implication to Shift Work Related Sleep Deprivation

Authors: Bing-Fang Lee, Srinivasan Periasamy, Ming-Yie Liu

Abstract:

Shift work sleep disorder is a common problem in industrialized world. It is a type of circadian rhythmic sleep disorders characterized by insomnia and sleep deprivation. Lack of sleep in workers may lead to poor health conditions such as hepatic dysfunction. Melatonin is a hormone secreted by the pineal gland to alleviate insomnia. Moreover, it is a powerful antioxidant and may prevent acute liver injury. Therefore, workers take in melatonin to deal with sleep-related health is an important issue. The aim of this study was to investigate the effect of melatonin on an acute hepatic injury model sinusoidal obstruction syndrome (SOS) in mice. Male C57BL/6 mice were injected with a single dose (500 mg/kg) of monocrotaline (MCT) to induce SOS. Melatonin (1, 3, 10 and 30 mg/kg) was injected 1 h before MCT treatment. After 24 h of MCT treatment, mice were sacrificed. The blood and liver were collected. Organ damage was evaluated by serum biochemistry, hematology analyzer, and histological examination. Low doses of melatonin (1 and 3 mg/kg) had no protective effect on SOS. However, high doses (10 and 30 mg/kg) exacerbated SOS. In addition, it not only increased serum glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and extended liver damage indicated by histological examination but also decreased platelet levels, lymphocyte ratio, and glutathione level; it had no effect on malondialdehyde and nitric oxide level in SOS mice. To conclude, melatonin may exacerbate MCT-induced SOS in mice. Furthermore, melatonin might have a synergistic action with SOS. Usage of melatonin for insomnia by people working in long shift must be cautioned; it might cause acute hepatic injury.

Keywords: acute liver injury, melatonin, shift work, sleep deprivation

Procedia PDF Downloads 193
276 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 305
275 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate

Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman

Abstract:

Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.

Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis

Procedia PDF Downloads 225
274 Indoleamines (Serotonin & Melatonin) in Edible Plants: Its Influence on Human Health

Authors: G. A. Ravishankar, A. Ramakrishna

Abstract:

Melatonin (MEL) and Serotonin (SER), also known as [5-Hydroxytryptamine (5-HT)] are reported to be in a range of plant types which are edible. Their occurrence in plants species appears to be ubiquitous. Their presence in high quantities in plants assumes significance owing to their physiological effects upon consumption by human beings. MEL is a well known animal hormone mainly released by the pineal gland known to influence circadian rhythm, sleep, apart from immune enhancement. Similarly, SER is a neurotransmitter that regulates mood, sleep and anxiety in mammals. It is implicated in memory, behavioral changes, scavenging reactive oxygen species, antipsychotic, etc. Similarly Role of SER and MEL in plant morphogenesis, and various physiological processes through intense research is beginning to unfold. These molecules are in common foods viz banana, pineapple, plum, nuts, milk, grape wine. N- Feruloyl serotonin and p-coumaroyl serotonin found in certain seeds are found to possess antioxidant, anti-inflammatory, antitumor, antibacterial, and anti-stress potential apart from reducing depression and anxiety. MEL is found in Mediterranean diets, nuts, cherries, tomato berries, and olive products. Consumption of foods rich in MEL is known to increase blood MEL levels which have been implicated in protective effect against cardiovascular damage, cancer initiation and growth. MEL is also found in wines, green tea, beer, olive oil etc. Moreover, presence of SER and MEL in Coffee beans (green and roasted beans) and decoction has been reported us. In this communication we report the occurrence of indole amines in edible plants and their implications in human health.

Keywords: serotonin, melatonin, edible plants, neurotransmitters, physiological effects

Procedia PDF Downloads 279
273 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells

Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim

Abstract:

Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.

Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique

Procedia PDF Downloads 215
272 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed

Authors: Muga Moses

Abstract:

Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.

Keywords: African nightshade, growth, yield, shoot, gibberellins

Procedia PDF Downloads 88
271 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 81
270 The Effect of SIRT1 on NLRP3 (Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3) Inflammasome of Osteoarthritis

Authors: So Youn Park, Yi Sle Lee, Ki Whan Hong, Chi Dae Kim

Abstract:

The role of metabolism in the pathogenesis of osteoarthritis is an emerging field. Metabolic alterations may be a role in osteoarthritis (OA) pathogenesis, and these changes influence joint destruction via several cytokine. Especially, in OA patients, levels of IL-1β are elevated in the synovial fluid, synovial membrane, subchondral bone, and cartilage. The IL-1β is activated by NLRP3 inflammasomes, and NLRP3 inflammasomes are cytosolic complexes that drive the production of other inflammatory cytokines, including IL-1β. In this study, we examined that SIRT1 suppresses IL-1β through inhibiting NLRP3 inflammasomes and SIRT1 ameliorates osteoarthritis. OA fibroblasts were isolated from synovium of OA patients. IL-1β and NLRP3 were detected in synovium of OA patients by immunohistochemistry. Lipopolysaccharides (LPS) stimulated the expression of active IL-1β mRNA in OA fibroblasts and combination of LPS, and adenosine triphosphate increased more the expression of active IL-1β in OA fibroblasts. The level of IL-1β was measured by western blot and ELISA assay. NLRP3 inflammasomes complex were measured by western blot. SIRT1 did not inhibit expression of NLRP3 inflammasome. So caspase-1, apoptotic speck-like protein containing a caspase recruitment domain (ASC) and NLRP3 protein were expressed in OA fibroblasts. But SIRT1 suppressed activation of IL-1β by inhibiting activity of caspase-1 via NLRP3 inflammasome in OA fibroblasts under LPS plus ATP stimulation. These results suggest that SIRT1 is a modulator of NLRP3 inflammasomes in OA fibroblasts and ameliorate IL-1β, so expression of SIRT1 in OA fibroblast may be a potential strategy for OA inflammation treatment.

Keywords: osteoarthritis, inflammasome, SIRT1, IL-1beta

Procedia PDF Downloads 199
269 Analgesic Efficacy of Opiorphin and Its Analogue

Authors: Preet Singh, Kavitha Kongara, Dave Harding, Neil Ward, Paul Chambers

Abstract:

The objective of this study was to compare the analgesic efficacy of opiorphin and its analogue with a mu-receptor agonist; morphine. Opiorphins (Gln-Arg-Phe-Ser-Arg) belong to the family of endogenous enkephalinase inhibitors, found in saliva of humans. They are inhibitors of two Zinc metal ectopeptidases (Neutral endopeptidase NEP, and amino-peptidase APN) which are responsible for the inactivation of the endogenous opioids; endorphins and enkephalins. Morphine and butorphanol exerts their analgesic effects by mimicking the actions of endorphins and enkephalins. The opiorphin analogue was synthesized based on the structure activity relationship of the amino acid sequence of opiorphin. The pharmacological profile of the analogue was tested by replacing Serine at position 4 with Proline. The hot plate and tail flick test were used to demonstrate the analgesic efficacy. There was a significant increase in the time for the tail flick response after an injection of opiorphin, which was similar to the morphine effect. There was no increase in time in the hot plate test after an injection of opiorphin. The results suggest that opiorphin works at spinal level only rather than both spinal and supraspinal. Further work is required to confirm our results. We did not find analgesic activity of the opiorphin analogue. Thus, Serine at position 4 is also important for its pharmacological action. Further work is required to illustrate the role of serine at position 4 in opiorphin.

Keywords: analgesic peptides, endogenous opioids, morphine, opiorphin

Procedia PDF Downloads 325
268 Annual Audit for the Year 2021 for Patients with Hyperparathyroidism: Not as Rare an Entity as We Believe

Authors: Antarip Bhattacharya, Dhritiman Maitra

Abstract:

Primary hyperparathyroidism (PHPT) is the most common cause of hypercalcemia due to autonomous production of parathormone (PTH) and the third most common endocrine disorder. Upto 2% of postmenopausal women could have this condition. Primary hyperparathyroidism is characterized by hypercalcemia with a high or insufficiently suppressed level of parathyroid hormone and is caused by a solitary parathyroid adenoma in 85-90% of patients. PHPT may also be caused by parathyroid hyperplasia (involving multiple glands) or parathyroid carcinoma. Associated morbidities and sequelae include decreased bone mineral density, fractures, kidney stones, hypertension, cardiac comorbidities and psychiatric disorder which entail huge costs for treatment. In the year 2021, by virtue of running a Breast and Endocrine Surgery clinic in a Tier 1 city at a tertiary care hospital, the opportunity to be associated with patients of hyperparathyroidism came our way. Here, we shall describe the spectrum of clinical presentations and customisation of treatment for parathyroid diseases with reference to the above patients. A retrospective analysis of the data of all patients presenting with symptoms of parathyroid diseases was made and classified according to the cause. 13 patients had presented with symptoms of hyperparathyroidism and each case presented with unique symptoms and necessitated detailed evaluation. The treatment or surgery offered to each patient was tailored to his/her individual disease and led to favourable outcomes. Diseases affecting parathyroid are not as rare as we believe. Each case merits detailed clinical evaluation, investigations and tailoring of suitable treatment with regard to medical management and extent of surgery. Intra-operative frozen section/iOPTH monitoring are really useful adjuncts for intra-operative decision making.

Keywords: hyperparathyroidism, parathyroid adenoma, parathyroid surgery, PTH

Procedia PDF Downloads 124
267 Association of AGT (M268T) Gene Polymorphism in Diabetes and Nephropathy in Pakistan

Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Abid Azhar

Abstract:

Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy and foot infections. Pathogenesis of diabetic nephropathy (DN) is implicated by the polymorphisms in genes encoding the specific components of renin angiotensin aldosterone system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and angiotensin converting enzyme (ACE) genes. This study was designed to explore the possible association of AG (M268T) polymorphism in the patients of diabetes and nephropathy in Pakistan. Study subjects included 100 controls, 260 diabetic patients without renal insufficiency and 190 diabetic nephropathy patients with persistent albuminuria. Fasting blood samples were collected from all the subjects after getting institutional ethical approval and informed consent. The biochemical estimations, PCR amplification and direct sequencing for the specific region of AGT gene was carried out. A significantly high frequency of TT genotype and T allele of AGT (M268T) was observed in the patients of diabetes with nephropathy as compared to controls and diabetic patients without any known renal impairment. The TT genotype and T allele of AGT (M268T) polymorphism may be considered as a genetic risk factor for the development and progression of nephropathy in diabetes. Further cross sectional population studies would be of help to establish and confirm the observed possible association of AGT gene variations with development of nephropathy in diabetes.

Keywords: RAAS, AGT (M268T), diabetes, nephropathy

Procedia PDF Downloads 525
266 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 253
265 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 320
264 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.

Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 182
263 Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment.

Keywords: Alzheimer's disease, calcium, drug development, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 208
262 The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease

Authors: Francesca La Rosa , Marina Saresella, Mario Clerici, Michael Heneka

Abstract:

Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease.

Keywords: Alzheimer disease, innate immunity, neuroinflammation, NLRP3

Procedia PDF Downloads 456
261 Sesamol Decreases Melanin Biosynthesis via Melanogenesis-Related Gene Expressions in Melan-a Cells

Authors: Seung-Hwa Baek, In-Jung Nam, Sang-Han Lee

Abstract:

The development of anti-melanogenic agents is important for the prevention of serious esthetic problem like a melasma, freckle, age spots, and chloasma. The aim of this study was to investigate the anti-melanogenic effect of sesamol, an active lignan isolated from sesame seed, by mushroom and cellular tyrosinase assay, melanin content and the analysis of melanogensis-related mRNA expressions in melana cells. Sesamol showed strong inhibitory activity against the mushroom tyrosinase in a dose-dependent manner. Intracellular tyrosinase inhibition activity was also confirmed by zymography. At a concentration of 50 μM, sesamol inhibited melanin production in melan-a cells with no cytoxicity while those of phenylthiourea (PTU) as a positive control were the same condition. Sesamol significantly inhibited the expression of melanogensis-related genes, such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (Dct), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). These findings indicate that sesamol could reduce melanin biosynthesis via the downregulation of tyrosinase activity and melanin production via subsequent gene expression of melanogenesis-related proteins. Together, these results suggest that the sesamol have strong potential in inhibiting melanin biosynthesis, in that the substance may be used as a new skin-whitening agent of cosmetic materials.

Keywords: sesamol, sesame seed, melanin biosynthesis, melanogenesis-related gene, skin-whitening agent

Procedia PDF Downloads 389
260 In vitro Study on Characterization and Viability of Vero Cell Lines after Supplementation with Porcine Follicular Fluid Proteins in Culture Medium

Authors: Mayuva Youngsabanant, Suphaphorn Rabiab, Hatairuk Tungkasen, Nongnuch Gumlungpat, Mayuree Pumipaiboon

Abstract:

The porcine follicular fluid proteins (pFF) of healthy small size ovarian follicles (1-3 mm in diameters) of Large White pig ovaries were collected by sterile technique. They were used for testing the effect on cell viability and characterization of Vero cell lines using MTT assay. Two hundred microliter of round shape Vero cell lines were culture in 96 well plates with DMEM for 24 h. After that, they were attachment to substrate and some changed into fibroblast shape and spread over the surface after culture for 48 h. Then, Vero cell lines were treated with pFF at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins/mL for 24 h. Yields of the best results were analyzed by using one-way ANOVA. MTT assay reviewed an increasing in percentage of viability of Vero cell lines indicated that at concentration of 400-600 µg proteins/mL showed higher percentage of viability (115.64 ± 6.95, 106.91 ± 5.27 and 116.73 ± 20.15) than control group. They were significantly different from the control group (p < 0.05) but lower than the positive control group (DMEM with 10% heat treated fetal bovine serum). Cell lines showed normal character in fibroblast elongate shape after treated with pFF except in high concentration of pFF. This result implies that pFF of small size ovarian follicle at concentration of 400-600 µg proteins/mL could be optimized concentration for using as a supplement in Vero cell line culture medium to promote cell viability instead of growth hormone from fetal bovine serum. This merit could be applied in other cell biotechnology researches. Acknowledgements: This work was funded by a grant from Silpakorn University and Faculty of Science, Silpakorn University, Thailand.

Keywords: cell viability, porcine follicular fluid, MTT assay, Vero cell line

Procedia PDF Downloads 133
259 In vitro And in vivo Anticholinesterase Activity of the Volatile Oil of the Aerial Parts of Ocimum Basilicum L. and O. africanum Lour. Growing in Egypt

Authors: Mariane G. Tadros, Shahira M. Ezzat, Maha M. Salama, Mohamed A. Farag

Abstract:

In this study, the in vitro anticholinesterase activity of the volatile oils of both O. basilicum and O. africanum was investigated and both samples showed significant activity. As a result, the major constituents of the two oils were isolated using several column chromatography. Linalool, 1,8-cineol and eugenol were isolated from the volatile oil of O. basilicum and camphor was isolated from the volatile oil of O. africanum. The anticholinesterase activity of the isolated compounds were also evaluated where 1,8-cineol showed the highest inhibitory activity followed by camphor. To confirm these activities, learning and memory enhancing effects were tested in mice. Memory impairment was induced by scopolamine, a cholinergic muscarinic receptor antagonist. Anti-amnesic effects of both volatile oils and their terpenoids were investigated by the passive avoidance task in mice. We also examined their effects on brain acetylcholinesterase activity. Results showed that scopolamine-induced cognitive dysfunction was significantly attenuated by administration of the volatile oils and their terpenoids, eugenol and camphor, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that O. basilicum and O. africanum volatile oils can be good candidates for further studies on Alzheimer’s disease via their acetylcholinesterase inhibitory actions.

Keywords: Ocimum baselicum, Ocimum africanum, GC/MS analysis, anticholinesterase

Procedia PDF Downloads 455
258 The Effect of Malaria Parasitaemia on Serum Reproductive Hormonal Levels of Asymptomatic HIV Subjects in Nauth Nnewi, South Eastern Nigeria

Authors: Ezeugwunne Ifeoma Priscilla, Charles Chinedum Onyenekwe, Joseph Eberendu Ahaneku, Rosemary Adanma Analike, Adesuwa Peace Eidangbe

Abstract:

This study was designed to assess the effect of malaria parasitaemia on serum reproductive hormone levels of asymptomatic HIV adult subjects. A total of 271 participants aged between 17 and 58 ears were conveniently recruited. 135 asymptomatic HIV-infected subjects participated in the study; 67 of them had malaria parasitaemia. 136 HIV seropositive control subjects, 68 of them had malaria parasitaemia. Blood samples were collected from the participants for the determination of HIV status by immunoassay and immunochromatography. Enzyme-linked immunosorbent assay (ELISA) was used to assay for serum LH, FSH, Estrogen, testosterone, progesterone, prolactin, and PSA levels, CD4+T cell counts by Cyflow method, thick and thin films determination of malaria parasitaemia count and density by WHO. Student's t-tests and ANOVA were used to compare means. P<0.05 was considered statistically significant. The results showed significant differences in serum levels of LH, FSH, PSA, estrogen, progesterone, and testosterone amongst the groups at P<0.05, respectively. The serum levels of LH, FSH, and PSA were significantly higher in malaria-infected asymptomatic HIV subjects than in asymptomatic HIV subjects with malaria parasitaemia (P<0.05 in each case). Also, the serum levels of LH, FSH, PSA, estrogen, and progesterone were significantly higher in malaria-infected asymptomatic HIV subjects compared with malaria-infected HIV seronegative subjects (P<0.05, respectively). The mean MP counts and MP density were significantly higher in asymptomatic HIV subjects compared to HIV seronegative subjects (P<0.05, in each case). The mean serum levels of testosterone were significantly lower in both malaria-infected and malaria uninfected HIV seronegative subjects (P<0.05, in each case). In conclusion, Malaria and HIV co-infection might increase the burden of hypogonadism as well as primary testicular failure, hyperprogesteronaemia, elevated levels of estrogen, and PSA in adult males asymptomatic HIV subjects.

Keywords: malaria parasitaemia, HIV, CD4, reproductive hormones

Procedia PDF Downloads 141
257 Synthesis of a Library of Substituted Isoquinolines Based on a Triazolization Strategy, and Their Anti-HIV and C-X-C Chemokine Receptor Type 4 Antagonist Activity

Authors: Mastaneh Safarnejad Shad, Wim Dehaen, Steven De Jonghe

Abstract:

Since CXCR4 is the main coreceptor of HIV-1 and plays an important role in human immunodeficiency virus (HIV) entry, numerous efforts were directed towards the discovery of new classes of small molecules that act as CXCR4 antagonists. In addition, CXCR4 antagonists are potentially useful in the treatment of several other disorders, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis, and pulmonary fibrosis. Since AMD3100 (plerixafor) is the only CXCR4 antagonist which obtained approval by the Food and Drug Administration (FDA), we were motivated to investigate a new category of molecules as CXCR4 antagonists. Most of the scaffolds which have been studied so far as CXCR4 antagonists are based on the tetrahydroquinoline (THQ) moiety in which AMD11070 (mavorixafor), GSK-812394, and TIQ15 displayed the most potent CXCR4 antagonism. Due to the high potency of these scaffolds, two different series of compounds were prepared in this work. In the first set, the THQ moiety is coupled to an amine chain and various isoquinoline derivatives (prepared by an in-house developed triazolization strategy), of which the upper part of molecules is identical to AMD11070 and TIQ15. In the second category of compounds, the THQ moiety was simplified by the synthesis of a substituted pyridine moiety. In order to investigate if CXCR4 antagonism requires the presence of an isoquinoline moiety, the corresponding pyridine analogues were also prepared. In both series of compounds, potent CXCR4 antagonism was noticed.

Keywords: CXCR4 coreceptor, CXCR4 antagonists, HIV inhibitor, tetrahydroquinoline

Procedia PDF Downloads 193
256 Factors Associated with Ketamine Use in Pancreatic Cancer Patient in a Single Hospice Center

Authors: Kyung Min Kwom, Young Joo Lee

Abstract:

Purpose: Up to 90% of pancreatic cancer patient suffer from neuropathic pain. In palliative care setting, pain control in a pancreatic cancer patient is one of the major goals. Ketamine is a NMDA receptor antagonist effective in neuropathic pain. Also, there have been studies about opioid sparing effect of ketamine. This study was held in palliative care unit among pancreatic cancer patients to find out the factors related to ketamine use and the opioid sparing effect. Methods: Medical records of pancreatic cancer patients admitted to St. Mary’s hospital palliative care unit from 2013.1 to 2014.12 were reviewed. Patients were divided into two categories according to ketamine use. Also, opioid use before and after ketamine use was compared in ketamine group. Results: Compared to non ketamine use group, patients in ketamine group required a higher dose of opioid. Total opioid dose, daily opioid dose, number of daily rescue medication, daily average rescue dose were statistically significantly higher in ketamine group. Opioid requirement was increased after ketamine administration. Conclusion: In this study, ketamine group required more opioid. Ketamine is frequently considered in patients with severe pain, requiring high amount of opioid. Also, ketamine did not have an opioid sparing effect. Future studies about palliative use of ketamine in a larger number of patients are required.

Keywords: ketamine, opioid sparing, palliative care, pancreatic cancer

Procedia PDF Downloads 233