Search results for: double nearest proportion feature extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5545

Search results for: double nearest proportion feature extraction

5095 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 131
5094 Unsupervised Learning of Spatiotemporally Coherent Metrics

Authors: Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun

Abstract:

Current state-of-the-art classification and detection algorithms rely on supervised training. In this work we study unsupervised feature learning in the context of temporally coherent video data. We focus on feature learning from unlabeled video data, using the assumption that adjacent video frames contain semantically similar information. This assumption is exploited to train a convolutional pooling auto-encoder regularized by slowness and sparsity. We establish a connection between slow feature learning to metric learning and show that the trained encoder can be used to define a more temporally and semantically coherent metric.

Keywords: machine learning, pattern clustering, pooling, classification

Procedia PDF Downloads 449
5093 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 173
5092 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 331
5091 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K

Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani

Abstract:

Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.

Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol

Procedia PDF Downloads 152
5090 Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection

Authors: Mustafa Alshawaqfeh, Bilal Wajidy, Echin Serpedin, Jan Suchodolski

Abstract:

Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics.

Keywords: ulcerative colitis, biomarker detection, feature selection, inflammatory bowel disease (IBD)

Procedia PDF Downloads 397
5089 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 250
5088 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method

Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko

Abstract:

The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.

Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion

Procedia PDF Downloads 287
5087 Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material

Authors: P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid

Abstract:

Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre.

Keywords: bamboo fibres, natural fibres, bio composite, mechanical extraction, glass fibres

Procedia PDF Downloads 483
5086 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 181
5085 Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide

Authors: Kahina Bedda, Boudjema Hamada

Abstract:

Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm.

Keywords: desulfurization, gasoil, N, N-dimethylformamide, sulfur content

Procedia PDF Downloads 380
5084 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 487
5083 Liquid-Liquid Extraction of Uranium(vi) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time= 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.

Keywords: liquid-liquid extraction, uranium(vi), 1-hydroxyalkylidene-1, 1-diphosphonic acids, hhdpa, hddpa, aqueous solution

Procedia PDF Downloads 266
5082 A Low-Voltage Synchronous Command for JFET Rectifiers

Authors: P. Monginaud, J. C. Baudey

Abstract:

The synchronous, low-voltage command for JFET Rectifiers has many applications: indeed, replacing the traditional diodes by these components allows enhanced performances in gain, linearity and phase shift. We introduce here a new bridge, including JFET associated with pull-down, bipolar command systems, and double-purpose logic gates.

Keywords: synchronous, rectifier, MOSFET, JFET, bipolar command system, push-pull circuits, double-purpose logic gates

Procedia PDF Downloads 355
5081 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method

Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani

Abstract:

The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.

Keywords: different sources, elderberry, grinding, juicing, polyphenols

Procedia PDF Downloads 289
5080 Fast-Forward Problem in Asymmetric Double-Well Potential

Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura

Abstract:

The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.

Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field

Procedia PDF Downloads 334
5079 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction

Authors: Aleksandrs Kovalcuks, Mara Duma

Abstract:

Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.

Keywords: cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction

Procedia PDF Downloads 506
5078 Performance Analysis of Double Gate FinFET at Sub-10NM Node

Authors: Suruchi Saini, Hitender Kumar Tyagi

Abstract:

With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.

Keywords: current on-off ratio, FinFET, short-channel effects, transconductance

Procedia PDF Downloads 58
5077 Simple Modified Method for DNA Isolation from Lyophilised Cassava Storage Roots (Manihot esculenta Crantz.)

Authors: P. K. Telengech, K. Monjero, J. Maling’a, A. Nyende, S. Gichuki

Abstract:

There is need to identify an efficient protocol for use in extraction of high quality DNA for purposes of molecular work. Cassava roots are known for their high starch content, polyphenols and other secondary metabolites which interfere with the quality of the DNA. These factors have negative interference on the various methodologies for DNA extraction. There is need to develop a simple, fast and inexpensive protocol that yields high quality DNA. In this improved Dellaporta method, the storage roots are lyophilized to reduce the water content; the extraction buffer is modified to eliminate the high polyphenols, starch and wax. This simple protocol was compared to other protocols intended for plants with similar secondary metabolites. The method gave high yield (300-950ng) and pure DNA for use in PCR analysis. This improved Dellaporta protocol allows isolation of pure DNA from starchy cassava storage roots.

Keywords: cassava storage roots, dellaporta, DNA extraction, lyophilisation, polyphenols secondary metabolites

Procedia PDF Downloads 358
5076 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method

Procedia PDF Downloads 249
5075 Simultaneous Extraction and Estimation of Steroidal Glycosides and Aglycone of Solanum

Authors: Karishma Chester, Sarvesh Paliwal, Sayeed Ahmad

Abstract:

Solanumnigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of Solanaceae these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time simultaneous extraction and quantification of aglycone (solasodine)and glycosides (solamargine and solasonine) inleaves and berries of S.nigrumusing solvent extraction followed by HPTLC analysis. Simultaneous extraction was carried out by sonication in mixture of chloroform and methanol as solvent. The quantification was done using silica gel 60F254HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5 % ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phaseat 400 nm, after derivatization with an isaldehydesul furic acid reagent. The method was validated as per ICH guideline for calibration, linearity, precision, recovery, robustness, specificity, LOD, and LOQ. The statistical data obtained for validation showed that method can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.

Keywords: solanumnigrum, solasodine, solamargine, solasonine, quantification

Procedia PDF Downloads 327
5074 The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy

Authors: W. Ketren, J. Wannapeera, Z. Heishun, A. Ryuichi, K. Toshiteru, M. Kouichi, O. Hideaki

Abstract:

Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 oC with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching  (3600-3100 cm-1) decreased slightly with increasing temperature in the range of 300-350 oC. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 oC. FTIR spectra in the carbonyl stretching region (1800-1600 cm-1) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250 oC and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 oC. From 300 to 350 oC, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process.

Keywords: biomass waste, degradative solvent extraction, mechanism, upgrading

Procedia PDF Downloads 279
5073 Synthetic Cannabinoids: Extraction, Identification and Purification

Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan

Abstract:

In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.

Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids

Procedia PDF Downloads 459
5072 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 63
5071 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 413
5070 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 49
5069 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: tunnel form building, in-plane lateral cyclic loading, crack pattern, lateral strength, stiffness, ductility, equivalent viscous damping, repair and retrofit

Procedia PDF Downloads 348
5068 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: building detection, shadow detection, landscape generation, label, partitioning, very high resolution (VHR) satellite imagery

Procedia PDF Downloads 309
5067 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 113
5066 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 399