Search results for: diagenetic clay
174 Preparation and Characterization of Iron/Titanium-Pillared Clays
Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea
Abstract:
The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.Keywords: iron doping, montmorillonite clays, pillared clays, oil industry
Procedia PDF Downloads 302173 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils
Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom
Abstract:
Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.Keywords: electrical resistivity, clayey soil, physical properties, shear properties
Procedia PDF Downloads 292172 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)
Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine
Abstract:
Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca
Procedia PDF Downloads 111171 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 78170 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement
Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana
Abstract:
The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical
Procedia PDF Downloads 313169 Experiments with Saggar Application in Traditional Indian Pottery
Authors: Arman Ovla, Satyaki Roy, Shatrupa T. Roy
Abstract:
India is known for the richness of its tradition and cultural heritage. The practice of crafts like pottery and terracotta has a long-standing history. Some of the oldest specimens of fine pottery were excavated from the ancient sites of Indus-valley settlements dating back to 4000 years. There are so many techniques and styles which have developed through time. Pottery with red clay and low firing is one of the oldest branches of ceramic which is still being made in India in large quantities. This study is based on field research carried out in two large pottery clusters. The traditional potters of Pahari in Rajasthan and Nizamabad in Uttar Pradesh are baking pots with the help of saggar containers and creating products quite different from others. The potters of Prajapati community residing in both places have been engaged in the art of making pottery for ages. The knowledge of pottery and associated skills are passed on from one generation to the next. They use only the local material available in their vicinity and adapt the design and decorations to create an identity that is deeply rooted in their origins. For the purpose of this research, pure qualitative research methodology was followed with field visits and data collection from Pahari and Nizamabad. Observations and notes made from non-intrusive techniques and direct interview methods of existing potters residing in the region. This paper on Saggar pottery describes the tools and techniques, methods and materials, the firing process, and indigenous stylistic attributes.Keywords: Saggar, smoke firing, black pottery, Nizamabad, Pahari
Procedia PDF Downloads 77168 Depositional Environment of the Babouchite Rocks of Numidian Formation, Northwestern Tunisia: Mineralogical Study and Geochemical Properties
Authors: Ben Yahia Nouha, Harris Chris, Boussen Slim, Chaabani Fredj
Abstract:
The present work has set itself the objective of studying non-detritic siliceous rocks in the extreme northwestern of Tunisia. It aims to discuss the origin and depositional environment of siliceous rocks based on petrographic, mineralogical, and geochemical results. The different sections were made in the area of Babouch and the area of Cap-Serrat. The collected samples were subjected to petrographic, mineralogical, and geochemical characterization using different analytical methods: scanning electron microscopy (SEM), X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ¹⁸O) to assess their suitability for industrial use. These babouchite shows that the mineralogy consists of quartz as the dominant mineral with the total lack of amorphous silica, while clay represents the minor phase. The petrographic examination revealed allowed to deduce that it is a rock of chemical origin deriving from tests of siliceous organisms (the radiolarians). Chemical analyzes show that SiO₂, Al₂O₃, and Fe₂O₃ represent the most abundant oxides. The other oxides are present in negligible quantity. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites are formed in an environment with a high temperature, ranging from 56°C to 73°C.Keywords: siliceous rocks, babouchite formation, XRD, chemical analysis, isotopic geochemistry, Northwestern of Tunisia
Procedia PDF Downloads 153167 Behavior of Laterally Loaded Multi-Helix Helical Piles Under Vertical Loading in Cohesive and Cohesionless Soils
Authors: Mona Fawzy Aldaghma
Abstract:
Helical piles are gaining popularity as a viable deep foundation alternative due to their quick installation and multipurpose use in compression and tension. These piles are commonly used as foundations for constructions such as solar panels, wind turbines and offshore platforms. These structures typically transfer various combinations of loads to their helical-pile foundations, including axial and lateral loads. Further research is needed to determine the effects of loading patterns that may act on helical piles as compounds of axial compression and lateral stresses. Multi helical piles are used to increase the efficiency of these piles. In this study, it investigate the behavior of laterally loaded helical piles with multiple helices when subjected to vertical loading conditions in both cohesive and cohesionless soils. Two models of intermediate shaft rigidity are studied with either two or three helices. Additionally, the vertical loading conditions were altered between successive and simultaneous loading. The cohesionless soil is sand with medium density and the cohesive soil is clay with medium cohesion. The study will carried out with numerical analysis using PLAXIS 3D and will be verified by an experimental tests. The numerical simulations reveal that helical piles exhibit different behavior in cohesive soil compared to cohesionless soil.Keywords: helical piles, multi-helix, numerical modeling, PLAXIS 3D, cohesive soil, cohesionless soil, experimental
Procedia PDF Downloads 34166 The Influence of Incorporating Coffee Grounds on Enhancing the Engineering Properties of Expansive Soils: Experimental Approach and Optimization
Authors: Bencheikh Messaouda, Aidoud Assia, Salima Boukour, Benamara Fatima Zohra, Boukhatem Ghania, Zegueur Chaouki Salah Eddine
Abstract:
The utilization of waste materials in civil engineering has gained widespread attention in recent years due to their adverse effects on the environment. One such waste material is coffee grounds, a black residue generated daily across the country after coffee brewing. Instead of disposing of it, there is a growing interest in repurposing it for various agricultural and industrial applications. Utilizing coffee grounds in geotechnical engineering, such as in road embankments, presents an opportunity for its valorization. The study aims to contribute to the valorization of coffee grounds by enhancing the physical and mechanical properties of clayey soils through their incorporation at varying weight percentages (3%, 6%, 9%, 12%) as partial replacements in these soils. This not only addresses the issue of coffee ground waste but also makes a tangible contribution to sustainable development. The findings demonstrate that incorporating coffee grounds generally has positive effects on the physical and mechanical properties of clayey soil. However, the extent of these effects depends on factors such as the quantity of coffee grounds added, the particle size of the grounds, and the characteristics of the soil. Additionally, coffee grounds can improve the compression and tensile strength of clayey soil, resulting in increased stability and reduced susceptibility to deformation under external forces.Keywords: clay soil, coffee grounds, optimizing, improvement, valorization, waste
Procedia PDF Downloads 44165 Mineralogical and Geochemical Constraints on the Origin and Environment of Numidian Siliceous Sedimentary Rocks of the Extreme Northwest Tunisia
Authors: Ben Yahia Nouha, Harris Chris, Sebei Abdelaziz, Boussen Slim, Chaabani Fredj
Abstract:
The present work has set itself the objective of studying non-detritic siliceous rocks of the extreme northwest Tunisia. It aims to examine the origin and their sedimentary depositional environment based on mineralogical and geochemical characteristics. The different sections were located in the area of Babouch and the area of Tabarka. The collected samples were subjected to mineralogical and geochemical characterization using different analytical methods: X-ray diffraction (XRD), geochemical analysis (ICP- AES), isotopic geochemistry (δ18O), to assess their suitability for industrial use. X-ray powder diffraction of the pure siliceous rock indicates quartz as the major mineral, with the total lack of amorphous silica. Trace impurities, such as carbonate and clay minerals, are concealed in the analytical results. The petrographic examination revealed allowed us to deduce that this rock was deriving from tests of siliceous organisms (the radiolarians). The chemical composition shows that SiO2, Al2O3, and Fe2O3 represent the most abundant oxides. The other oxides are present in negligible quantities. Geochemical data support a biogenic and non-hydrothermal origin of babouchite silica. Oxygen isotopic has shown that babouchites were formed in an environment with a high temperature ranging from 56 °C to 73 °C.Keywords: biogenic silica, babouchite formation, XRD, chemical analysis, oxygen isotopic, northwest tunisia
Procedia PDF Downloads 144164 Anlaytical Studies on Subgrade Soil Using Jute Geotextile
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 441163 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba
Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo
Abstract:
Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba
Procedia PDF Downloads 442162 Toxic Dyes Removal in Aqueous Solution Using Calcined and Uncalcined Anionic Clay Zn/Al+Fe
Authors: Bessaha Hassiba, Bouraada Mohamed
Abstract:
Layered double hydroxide with Zn/(Al+Fe) molar ratio of 3:1 was synthesized by co-precipitation method and their calcined product was obtained by heating treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove weak acid dyes: indigo carmine (IC) and green bezanyl-F2B (F2B) in aqueous solution. The synthesized materials were characterized by XRD, SEM, FTIR and TG/DTA analysis confirming the formation of pure layered structure of ZAF-HT, the destruction of the original structure after calcination and the intercalation of the dyes molecules. Moreover, the interlayer distance increases from 7.645 Å in ZAF-HT to 19.102 Å after the dyes sorption. The dose of the adsorbents was chosen 0.5 g/l while the initial concentrations were 250 and 750 mg/l for indigo carmine and green bezanyl-F2B respectively. The sorption experiments were carried out at ambient temperature and without adjusting the initial solution pH (pHi = 6.10 for IC and pHi = 5.01 for F2B). In addition, the maximum adsorption capacities obtained by ZAF-HT and CZAF for both dyes followed the order: CZAF-F2B (1501.4 mg.g-1) > CZAF-IC (617.3 mg.g-1) > ZAF-HT-IC (41.4 mg.g-1) > ZAF-HT-F2B (28.9 mg.g-1). The removal of indigo carmine and green bezanyl-F2B by ZAF-HT was due to the anion exchange and/or the adsorption on the surface. By using the calcined material (CZAF), the removal of the dyes was based on a particular property, called ‘memory effect’. CZAF recover the pristine structure in the presence anionic molecules such as acid dyes where they occupy the interlayer space. The sorption process was spontaneous in nature and followed pseudo-second-order. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF were consistent with Langmiur model.Keywords: acid dyes, adsorption, calcination, layered double hydroxides
Procedia PDF Downloads 220161 Performance of Rapid Impact Compaction as a Middle-Deep Ground Improvement Technique
Authors: Bashar Tarawneh, Yasser Hakam
Abstract:
Rapid Impact Compaction (RIC) is a modern dynamic compaction device mainly used to compact sandy soils, where silt and clay contents are low. The device uses the piling hammer technology to increase the bearing capacity of soils through controlled impacts. The RIC device uses "controlled impact compaction" of the ground using a 9-ton hammer dropped from the height between 0.3 m to 1.2 m onto a 1.5 m diameter steel patent foot. The delivered energy is about 26,487 to 105,948 Joules per drop. To evaluate the performance of this technique, three project sites in the United Arab Emirates were improved using RIC. In those sites, a loose to very loose fine to medium sand was encountered at a depth ranging from 1.0m to 4.0m below the ground level. To evaluate the performance of the RIC, Cone Penetration Tests (CPT) were carried out before and after improvement. Also, load tests were carried out post-RIC work to assess the settlements and bearing capacity. The soil was improved to a depth of about 5.0m below the ground level depending on the CPT friction ratio (the ratio between sleeve friction and tip resistance). CPT tip resistance was significantly increased post ground improvement work. Load tests showed enhancement in the soil bearing capacity and reduction in the potential settlements. This study demonstrates the successful application of the RIC for middle-deep improvement and compaction of the ground. Foundation design criteria were achieved in all site post-RIC work.Keywords: compaction, RIC, ground improvement, CPT
Procedia PDF Downloads 363160 Analytical Studies on Subgrade Soil Using Jute Geotextiles
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, Jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 427159 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures
Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz
Abstract:
Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.Keywords: direct shear, shear strength, slag, UU test
Procedia PDF Downloads 478158 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil
Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami
Abstract:
—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.Keywords: consolidation, proctor compaction, swell index, treated waste-water, volume change
Procedia PDF Downloads 260157 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy
Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie
Abstract:
Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy
Procedia PDF Downloads 401156 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field
Authors: Maysoon Khalil Askar
Abstract:
The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content
Procedia PDF Downloads 436155 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions
Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres
Abstract:
Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature
Procedia PDF Downloads 75154 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley
Authors: Bal Deep Sharma, Suresh Ray Yadav
Abstract:
Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength
Procedia PDF Downloads 79153 Electrokinetic Remediation of Nickel Contaminated Clayey Soils
Authors: Waddah S. Abdullah, Saleh M. Al-Sarem
Abstract:
Electrokinetic remediation of contaminated soils has undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar contaminants (such as heavy metals) and nonpolar organic contaminants. It can efficiently be used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. EK processes have proved to be superior to other conventional methods, such as the pump and treat, and soil washing, since these methods are ineffective in such cases. This paper describes the use of electrokinetic remediation to clean up soils contaminated with nickel. Open cells, as well as advanced cylindrical cells, were used to perform electrokinetic experiments. Azraq green clay (low permeability soil, taken from the east part of Jordan) was used for the experiments. The clayey soil was spiked with 500 ppm of nickel. The EK experiments were conducted under direct current of 80 mA and 50 mA. Chelating agents (NaEDTA), disodium ethylene diamine-tetra-ascetic acid was used to enhance the electroremediation processes. The effect of carbonates presence in soils was, also, investigated by use of sodium carbonate. pH changes in the anode and the cathode compartments were controlled by using buffer solutions. The results showed that the average removal efficiency was 64%, for the Nickel spiked saturated clayey soil.Experiment results have shown that carbonates retarded the remediation process of nickel contaminated soils. Na-EDTA effectively enhanced the decontamination process, with removal efficiency increased from 64% without using the NaEDTA to over 90% after using Na-EDTA.Keywords: buffer solution, contaminated soils, EDTA enhancement, electrokinetic processes, Nickel contaminated soil, soil remediation
Procedia PDF Downloads 243152 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column
Procedia PDF Downloads 150151 Modelling Interactions between Saturated and Unsaturated Zones by Hydrus 1D, Plain of Kairouan, Central Tunisia
Authors: Mariem Saadi, Sabri Kanzari, Adel Zghibi
Abstract:
In semi-arid areas like the Kairouan region, the constant irrigation with saline water and the overuse of groundwater resources, soils and aquifers salinization has become an increasing concern. In this study, a methodology has been developed to evaluate the groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998-2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer in the unsaturated zone. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.Keywords: Hydrus-1D, Kairouan, salinization, semi-arid region, solute transport, unsaturated zone
Procedia PDF Downloads 179150 Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City
Authors: Seyedomid Fatemi
Abstract:
The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city.Keywords: optimum materials, building walls, moderate and humid climate, sustainable architecture, AHP-TOPSIS technique
Procedia PDF Downloads 75149 Case Study: Geomat Installation against Slope Erosion
Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu
Abstract:
Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.Keywords: erosion, GeoMat, geosynthetic, slope
Procedia PDF Downloads 174148 Geophysical Exploration of Aquifer Zones by (Ves) Method at Ayma-Kharagpur, District Paschim Midnapore, West Bengal
Authors: Mayank Sharma
Abstract:
Groundwater has been a matter of great concern in the past years due to the depletion in the water table. This has resulted from the over-exploitation of groundwater resources. Sub-surface exploration of groundwater is a great way to identify the groundwater potential of an area. Thus, in order to meet the water needs for irrigation in the study area, there was a need for a tube well to be installed. Therefore, a Geophysical investigation was carried out to find the most suitable point of drilling and sinking of tube well that encounters an aquifer. Hence, an electrical resistivity survey of geophysical exploration was used to know the aquifer zones of the area. The Vertical Electrical Sounding (VES) method was employed to know the subsurface geology of the area. Seven vertical electrical soundings using Schlumberger electrode array were carried out, having the maximum AB electrode separation of 700m at selected points in Ayma, Kharagpur-1 block of Paschim Midnapore district, West Bengal. The VES was done using an IGIS DDR3 Resistivity meter up to an approximate depth of 160-180m. The data was interpreted, processed and analyzed. Based on all the interpretations using the direct method, the geology of the area at the points of sounding was interpreted. It was established that two deeper clay-sand sections exist in the area at a depth of 50-70m (having resistivity range of 40-60ohm-m) and 70-160m (having resistivity range of 25-35ohm-m). These aquifers will provide a high yield of water which would be sufficient for the desired irrigation in the study area.Keywords: VES method, Schlumberger method, electrical resistivity survey, geophysical exploration
Procedia PDF Downloads 194147 A Standard Operating Procedure (SOP) for Forensic Soil Analysis: Tested Using a Simulated Crime Scene
Authors: Samara A. Testoni, Vander F. Melo, Lorna A. Dawson, Fabio A. S. Salvador
Abstract:
Soil traces are useful as forensic evidence due to their potential to transfer and adhere to different types of surfaces on a range of objects or persons. The great variability expressed by soil physical, chemical, biological and mineralogical properties show soil traces as complex mixtures. Soils are continuous and variable, no two soil samples being indistinguishable, nevertheless, the complexity of soil characteristics can provide powerful evidence for comparative forensic purposes. This work aimed to establish a Standard Operating Procedure (SOP) for forensic soil analysis in Brazil. We carried out a simulated crime scene with double blind sampling to calibrate the sampling procedures. Samples were collected at a range of locations covering a range of soil types found in South of Brazil: Santa Candida and Boa Vista, neighbourhoods from Curitiba (State of Parana) and in Guarani and Guaraituba, neighbourhoods from Colombo (Curitiba Metropolitan Region). A previously validated sequential analyses of chemical, physical and mineralogical analyses was developed in around 2 g of soil. The suggested SOP and the sequential range of analyses were effective in grouping the samples from the same place and from the same parent material together, as well as successfully discriminated samples from different locations and originated from different rocks. In addition, modifications to the sample treatment and analytical protocol can be made depending on the context of the forensic work.Keywords: clay mineralogy, forensic soils analysis, sequential analyses, kaolinite, gibbsite
Procedia PDF Downloads 252146 Evaluation of Shale Gas Resource Potential of Cambay Basin, Gujarat, India
Authors: Vaishali Sharma, Anirbid Sircar
Abstract:
Energy is one of the most eminent and fundamental strategic commodity, scarcity of which may poses great impact on the functioning of the entire commodity. According to the present study, the estimated reserves of gas in India as on 31.03.2015 stood at 1427.15 BCM. It is expected that the gas demand is set to grow significantly at a CAGR of 7% from 226.7 MMSCMD in 2012-13 to 713.5 MMSCMD in 2009-30. To bridge the gap between the demand and supply of energy, the interest towards the exploration and exploitation of unconventional resources like – Shale gas, Coal bed methane, Gas hydrates, tight gas etc has immensed. Nowadays, Shale gas prospects are emerging rapidly as a promising energy source globally. The United States of America (USA) has 240 TCF of proved reserves of shale gas and presently contributed more than 17% of total gas production. As compared to USA, shale gas production in India is at nascent stage. A resource potential of around 2000 TCF is estimated and according to preliminary data analysis, basins like Gondwana, Cambay, Krishna – Godavari, Cauvery, Assam-Arakan, Rajasthan, Vindhyan, and Bengal are the most promising shale gas basins. In the present study, the careful evaluation of Cambay Shale (Indian Shale) properties like geological age, lithology, depth, organically rich thickness, TOC, thermal maturity, porosity, permeability, clay content, quartz content, Kerogen type, Hydrocarbon window etc. has been done. And then the detailed comparison of Indian shale with USA shale will be discussed. This study investigates qualitative and quantitative nature of potential shale basins which will be helpful from exploration and exploitation point of view.Keywords: shale, shale gas, energy source, lithology
Procedia PDF Downloads 288145 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example
Authors: D. Jayalakshmi, S. S. Bhosale
Abstract:
This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.Keywords: base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition
Procedia PDF Downloads 192