Search results for: cohesive soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1024

Search results for: cohesive soils

574 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 291
573 Bioavailability of Zinc to Wheat Grown in the Calcareous Soils of Iraqi Kurdistan

Authors: Muhammed Saeed Rasheed

Abstract:

Knowledge of the zinc and phytic acid (PA) concentrations of staple cereal crops are essential when evaluating the nutritional health of national and regional populations. In the present study, a total of 120 farmers’ fields in Iraqi Kurdistan were surveyed for zinc status in soil and wheat grain samples; wheat is the staple carbohydrate source in the region. Soils were analysed for total concentrations of phosphorus (PT) and zinc (ZnT), available P (POlsen) and Zn (ZnDTPA) and for pH. Average values (mg kg-1) ranged between 403-3740 (PT), 42.0-203 (ZnT), 2.13-28.1 (POlsen) and 0.14-5.23 (ZnDTPA); pH was in the range 7.46-8.67. The concentrations of Zn, PA/Zn molar ratio and estimated Zn bioavailability were also determined in wheat grain. The ranges of Zn and PA concentrations (mg kg⁻¹) were 12.3-63.2 and 5400 – 9300, respectively, giving a PA/Zn molar ratio of 15.7-30.6. A trivariate model was used to estimate intake of bioaccessible Zn, employing the following parameter values: (i) maximum Zn absorption = 0.09 (AMAX), (ii) equilibrium dissociation constant of zinc-receptor binding reaction = 0.680 (KP), and (iii) equilibrium dissociation constant of Zn-PA binding reaction = 0.033 (KR). In the model, total daily absorbed Zn (TAZ) (mg d⁻¹) as a function of total daily nutritional PA (mmole d⁻¹) and total daily nutritional Zn (mmole Zn d⁻¹) was estimated assuming an average wheat flour consumption of 300 g day⁻¹ in the region. Consideration of the PA and Zn intake suggest only 21.5±2.9% of grain Zn is bioavailable so that the effective Zn intake from wheat is only 1.84-2.63 mg d-1 for the local population. Overall results suggest available dietary Zn is below recommended levels (11 mg d⁻¹), partly due to low uptake by wheat but also due to the presence of large concentrations of PA in wheat grains. A crop breeding program combined with enhanced agronomic management methods is needed to enhance both Zn uptake and bioavailability in grains of cultivated wheat types.

Keywords: phosphorus, zinc, phytic acid, phytic acid to zinc molar ratio, zinc bioavailability

Procedia PDF Downloads 111
572 Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application

Authors: Razmik Atabekyan, V. Atabekyan

Abstract:

This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions.

Keywords: seismic loads, response spectrum, dynamic characteristics of buildings, momentum

Procedia PDF Downloads 484
571 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 262
570 Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity

Authors: A. Kistaubayeva, I. Savitskaya, D. Ibrayeva, M. Abdulzhanova, N. Voronova

Abstract:

36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology.

Keywords: elemental sulfur, oxidation activity, Тhiobacilli, fertilizers, heterotrophic S-oxidizers

Procedia PDF Downloads 370
569 Dynamics of Soil Fertility Management in India: An Empirical Analysis

Authors: B. Suresh Reddy

Abstract:

The over dependence on chemical fertilizers for nutrient management in crop production for the last few decades has led to several problems affecting soil health, environment and farmers themselves. Based on the field work done in 2012-13 with 1080 farmers of different size-classes in semi-arid regions of Uttar Pradesh, Jharkhand and Madhya Pradesh states of India, this paper reveals that the farmers in semi-arid regions of India are actively managing soil fertility and other soil properties through a wide range of practices that are based on local resources and knowledge. It also highlights the socio-economic web woven around these soil fertility management practices. This study highlights the contribution of organic matter by traditional soil fertility management practices in maintaining the soil health. Livestock has profound influence on the soil fertility enhancement through supply of organic manure. Empirical data of this study has clearly revealed how farmers’ soil fertility management options are being undermined by government policies that give more priority to chemical fertiliser-based strategies. Based on the findings it is argued that there should be a 'level playing field' for both organic and inorganic soil fertility management methods by promoting and supporting farmers in using organic methods. There is a need to provide credit to farmers for adopting his choice of soil fertility management methods which suits his socio-economic conditions and that best suits the long term productivity of soils. The study suggests that the government policies related to soil fertility management must be enabling, creating the conditions for development based more on locally available resources and local skills and knowledge. This will not only keep Indian soils in healthy condition but also support the livelihoods of millions of people, especially the small and marginal farmers.

Keywords: livestock, organic matter, small farmers, soil fertility

Procedia PDF Downloads 151
568 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling

Authors: Marilyn S. Painagan, Willie Jones B. Saliling

Abstract:

This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.

Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity

Procedia PDF Downloads 231
567 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 122
566 Utilization of Silicon for Sustainable Rice Yield Improvement in Acid Sulfate Soil

Authors: Bunjirtluk Jintaridth

Abstract:

Utilization of silicon for sustainable rice cultivation in acid sulfate soils was studied for 2 years. The study was conducted on Rungsit soils in Amphoe Tanyaburi, Pathumtani Province. The objectives of this study were to assess the effect of high quality organic fertilizer in combination with silicon and chemical fertilizer on rice yield, chemical soil properties after using soil amendments, and also to assess the economic return. A Randomized Complete Block Design (RCBD) with 10 treatments and 3 replications were employed. The treatments were as follows: 1) control 2) chemical fertilizer (recommended by Land Development Department, LDD 3) silicon 312 kg/ha 4) high quality organic fertilizer at 1875 kg/ha (the recommendation rate by LDD) 5) silicon 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 6) silicon at the 312 kg/ha in combination with high quality organic fertilizer 1875 kg/ha 7) silicon 156 kg/ha in combination with chemical fertilizer 8) silicon at the 312 kg/ha in combination with chemical fertilizer 9) silicon 156 kg/ha in combination with ½ chemical fertilizer rate, and 10) silicon 312 kg/ha in combination with ½ chemical fertilizer rate. The results of 2 years indicated the treatment tended to increase soil pH (from 5.1 to 4.7-5.5), percentage of organic matter (from 2.43 to 2.54 - 2.94%); avail. P (from 7.5 to 7-21 mg kg-1 P; ext. K (from 616 to 451-572 mg kg-1 K), ext Ca (from 1962 to 2042.3-4339.7 mg kg-1 Ca); ext Mg (from 1586 to 808.7-900 mg kg-1 Mg); but decrease the ext. Al (from 2.56 to 0.89-2.54 cmol kg-1 Al. Two years average of rice yield, the highest yield was obtained from silicon 156 kg/ha application in combination with high quality organic fertilizer 300 kg/rai (3770 kg/ha), or using silicon at the 312 kg/ha combination with high quality organic fertilizer 300 kg/rai. (3,750 kg/ha). It was noted that chemical fertilizer application with 156 and 312 kg/ha silicon gave only 3,260 และ 3,133 kg/ha, respectively. On the other hand, half rate of chemical fertilizer with 156 and 312 kg/ha with silicon gave the yield of 2,934 และ 3,218 kg/ha, respectively. While high quality organic fertilizer only can produce 3,318 kg/ha as compare to rice yield of 2,812 kg/ha from control. It was noted that the highest economic return was obtained from chemical fertilizer treated plots (886 dollars/ha). Silicon application at the rate of 156 kg/ha in combination with high quality organic fertilizer 1875 kg/ha gave the economic return of 846 dollars/ha, while 312 kg/ha of silicon with chemical fertilizer gave the lowest economic return (697 dollars/ha).

Keywords: rice, high quality organic fertilizer, acid sulfate soil, silicon

Procedia PDF Downloads 142
565 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 156
564 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam

Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar

Abstract:

Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.

Keywords: FPZ, fracture, FRP, shear

Procedia PDF Downloads 523
563 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 122
562 Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage

Authors: R. Pillai Aparna, S. R. Gandhi

Abstract:

Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage.

Keywords: consolidation coefficient, degree of consolidation, PVDs, shear strength

Procedia PDF Downloads 216
561 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 279
560 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 379
559 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria

Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji

Abstract:

Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.

Keywords: organic amendment, parent material, rainfall simulation, soil erosion

Procedia PDF Downloads 329
558 Diffusion of Social Innovation in Thai Community Enterprises

Authors: Thanisa Sirithaporn

Abstract:

The study aims to examine the diffusion of social innovation among Thai Community Enterprises in conjunction with a singular case study of a medium-sized corporation that has successfully transitioned from a charitable foundation to a sustainable, profitable entity creating value for both shareholders and the communities in which it operates. It seeks to bridge the gap between different streams of aligned research in the fields of diffusion, social innovation, and community enterprises into a more cohesive conceptual framework and thus to better understand the historical and current impediments that have resulted in so many enterprises failing to be sustainable. The methodology is mixed and dual phased. The initial quantitative phase uses a questionnaire as the main research instrument distributed among community enterprises throughout Thailand which will provide the themes for the qualitative phase through semi-structured interviews with key stakeholders at a commercial enterprise actively engaged in social innovation. The findings seek to present a more comprehensive conceptual framework and actionable guidelines to aid community enterprises to develop social innovation in a sustainable manner that creates value to its beneficiaries.

Keywords: diffusion, community enterprises, social innovation, Thailand

Procedia PDF Downloads 121
557 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 62
556 Response of Lepidium Sativum to Ionic Toxicity

Authors: M. F. El-Barghathi, R. El-Tajouri

Abstract:

The effect of different concentrations of cadmium sulfate "CdSO4" (0.0, 10, 50, 100, 500 ppm) was tested on seed germination, seedling elongation and growth of Lepidium sativum (garden cress) plants. Results indicated that seed germination and seedling elongation were not inhibited by different concentrations of CdSO4. This could suggest that, Lepidium sativum may be used as a phyto remediation tool of soils contaminated with cadmium.

Keywords: Lepidium sativum, heavy metals, ionic toxicity, phytoremediation

Procedia PDF Downloads 543
555 Evaluation of Living Mulches Effectiveness in Weed Suppression, and Seed Yield of Black cumin (Nigella sativa L.) Under Salt Stress

Authors: Fatemeh Benakashani, Hossein Tavakoli, Elias Soltani

Abstract:

To ensure the sustainability of crop cultivation and rural economies, it is imperative that we focus on cultivating resilient crops capable of withstanding salt stress. However, the effective management of weeds in salt-affected soils remains a significant challenge. This study investigates the impact of living mulches, specifically Berseem clover (Trifolium alexandrinum) and Barley (Hordeum vulgare), on weed control, as well as the quality and yield of Black cumin (Nigella sativa) in salt-affected soil. In our research, we employed a two-fold mowing strategy for the living mulches: once following crop establishment and once before the flowering stage. Notably, the weed-free plots demonstrated Black cumin's seed yield, and oil content (31.1% to 34.3%), consistent with previous studies, highlighting its potential for the reclamation and utilization of salt-affected lands. However, Black cumin exhibited limited competitiveness against prevalent weeds in the field, such as Amaranthus retroflexus, Chenopodium album, and Portulaca oleracea, which significantly diminished both the 1000 grain mass in plots where weeds were present. Interestingly, the introduction of living mulches led to improvements in seed yield and seed oil content when compared to both weed-free and weed-infested plots. Notably, Berseem clover exhibited greater biomass than Barley, indicating its heightened competitiveness against weeds. Nevertheless, it's worth noting that in the long term, Berseem clover also competed with the main crop, thereby limiting overall productivity. Consequently, we recommend relocating the Berseem clover living mulch following the establishment of Black cumin as a strategy for weed management in Black cumin fields situated in salt-affected soils.

Keywords: weed management, competition, clover, barley, medicinal plant

Procedia PDF Downloads 43
554 The Relation between Urbanization and Forestry Policies in Turkey

Authors: Azize Serap Tuncer

Abstract:

Turkey is one of the most outstanding figures among the Mediterranean countries from the natural and historical point at view. It is relatively rich country as regards the flora and vegetation. But at the same time as a result of improper and unplanned usage of the land for centuries, its forests and fertile soils have been exposed to great damages. While rapid and uncontrolled urbanization has important effects on the environment, urban development legislations, have become very unsufficient for the protection of these areas. Some of them have been completely eradicated, and some others have lost their fertility. Besides Turkey has a high main land with a rough surface and its soils areas exposed to heavy erosion. On the other hand as a developing country, it is not willing to endanger the goals of industrialization and avoid foreign direct investment by implementing strict environmental policies. Although this kind of pressure on forestland resources threatens the stability of forest land and land use management, in recent years, there has been an obvious increase in public concern about environmental problems like over global warming, environmental pollution, deforestation and their potential effects on natural resources. To protect the ecological balance and prevention of naturel resources from the unplanned intervention of human-beıng is only possible establishing conservation areas wıth co-operation at the national and the internatıonal levels. This study was carried out to evaluate the relation between urbanization and forestry policies in Turkey. While it elaborates the normative arrangements resulting in power conflicts, it also addresses which shortages and discrepancies are responsible for the said conflicts. The present urban reconstruction and transformation practices and their aesthetic and functional aspects were studied with some examples in a country level and evaluated within the assistance of literature researches, analyses, and observations. Atatürk Forest Farm and ODTU Forest examples were negotiated as two famous cases. Obtained findings were supported by charts and photos.

Keywords: deforestration, environmental policies, metropolitan, pollution, urbanization

Procedia PDF Downloads 139
553 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 58
552 An Evaluation of the Influence of Corn Cob Ash on the Strength Parameters of Lateritic SoiLs

Authors: O. A. Apampa, Y. A. Jimoh

Abstract:

The paper reports the investigation of Corn Cob Ash as a chemical stabilizing agent for laterite soils. Corn cob feedstock was obtained from Maya, a rural community in the derived savannah agro-ecological zone of South-Western Nigeria and burnt to ashes of pozzolanic quality. Reddish brown silty clayey sand material characterized as AASHTO A-2-6(3) lateritic material was obtained from a borrow pit in Abeokuta and subjected to strength characterization tests according to BS 1377: 2000. The soil was subsequently mixed with CCA in varying percentages of 0-7.5% at 1.5% intervals. The influence of CCA stabilized soil was determined for the Atterberg limits, compaction characteristics, CBR and the unconfined compression strength. The tests were repeated on laterite cement-soil mixture in order to establish a basis for comparison. The result shows a similarity in the compaction characteristics of soil-cement and soil-CCA. With increasing addition of binder from 1.5% to 7.5%, Maximum Dry Density progressively declined while the OMC steadily increased. For the CBR, the maximum positive impact was observed at 1.5% CCA addition at a value of 85% compared to the control value of 65% for the cement stabilization, but declined steadily thereafter with increasing addition of CCA, while that of soil-cement continued to increase with increasing addition of cement beyond 1.5% though at a relatively slow rate. Similar behavior was observed in the UCS values for the soil-CCA mix, increasing from a control value of 0.4 MN/m2 to 1.0 MN/m2 at 1.5% CCA and declining thereafter, while that for soil-cement continued to increase with increasing cement addition, but at a slower rate. This paper demonstrates that CCA is effective for chemical stabilization of a typical Nigerian AASHTO A-2-6 lateritic soil at maximum stabilizer content limit of 1.5% and therefore recommends its use as a way of finding further application for agricultural waste products and achievement of environmental sustainability in line with the ideals of the millennium development goals because of the economic and technical feasibility of the processing of the cobs from corn.

Keywords: corn cob ash, pozzolan, cement, laterite, stabilizing agent, cation exchange capacity

Procedia PDF Downloads 279
551 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products

Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George

Abstract:

Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.

Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites

Procedia PDF Downloads 263
550 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies

Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environment

Keywords: PGPR, nitrogen fixation, phosphate solubilization, colonization

Procedia PDF Downloads 318
549 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India

Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat

Abstract:

The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.

Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage

Procedia PDF Downloads 103
548 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture

Authors: K. N. Ashna

Abstract:

Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.

Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test

Procedia PDF Downloads 247
547 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 97
546 Bioremediation Influence on Shear Strength of Contaminated Soils

Authors: Tawar Mahmoodzadeh

Abstract:

Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.

Keywords: oil contamination soil, shear strength, compaction, bioremediation

Procedia PDF Downloads 131
545 An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil

Authors: Rami Rami Mahmoud Bakr

Abstract:

The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system.

Keywords: constant rate of strain (CRS), resedimented boston blue clay (RBBC), resedimented vicksburg buckshot clay (RVBC), compression index

Procedia PDF Downloads 14