Search results for: dynamic characteristics of buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11832

Search results for: dynamic characteristics of buildings

11832 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings

Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada

Abstract:

The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.

Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code

Procedia PDF Downloads 134
11831 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 364
11830 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation

Authors: Mohamed Elassaly

Abstract:

The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.

Keywords: damage, frequency content, ground motion, PGA, RC building, seismic

Procedia PDF Downloads 376
11829 Ambient Vibration Testing of Existing Buildings in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.

Keywords: ambient vibration, fundamental period, RC buildings, infill walls

Procedia PDF Downloads 236
11828 Place Attachment and Residential Satisfaction in Old Residential Buildings: A Case of Pune City

Authors: Vaishali Anagal, Vasudha Gokhale, Sharvey Dhongde

Abstract:

Old buildings have significance in many aspects. The manifold significance may include historic, architectural and cultural aspects. In a cultural city like Pune, India, numerous residential buildings exist in the core city whose age may range between 60-100 years. These represent the city’s history and culture. Most of them are still in use as residential buildings with adaptations in various degrees. Some of these buildings are enlisted as ‘Heritage Buildings’ by local municipal authority. However, there are number of buildings that have heritage value although they are not enlisted as heritage sites. A lot of these buildings have already been pulled down for several reasons such as end of technical life, inadequacy for users, increasing floor area ratios, inflating land prices and changing lifestyles etc. Literature suggest that place attachment and residential satisfaction are positively related. It also indicates that length of residency is positively correlated with the place attachment. Residential satisfaction is associated with number of factors including socio demographic characteristics of users, housing characteristics, neighborhood characteristics and behavioral characteristics. This research paper poses an inquiry about the dynamics of co-relation between place attachment and residential satisfaction in case of old residential buildings. The motive of this enquiry is to examine if place attachment can serve as a strong ground for restoration of these old buildings and evade the devastation of emblems of cultural heritage of the city. The methodology includes questionnaire survey of users as well as a qualitative assessment regarding place attachment and residential satisfaction. About 20 residential buildings in the core city of Pune are selected for this purpose. The results of survey are analyzed and conclusions are drawn.

Keywords: place attachment, residential satisfaction, old residential buildings, housing characteristics, cultural heritage

Procedia PDF Downloads 205
11827 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 183
11826 Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings

Authors: Chanchan Liu

Abstract:

In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions.

Keywords: the rural building, active technology, passive technology, sustainable development

Procedia PDF Downloads 183
11825 Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application

Authors: Razmik Atabekyan, V. Atabekyan

Abstract:

This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions.

Keywords: seismic loads, response spectrum, dynamic characteristics of buildings, momentum

Procedia PDF Downloads 472
11824 Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings

Authors: Meral Yucel, Vildan Ok

Abstract:

This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009.

Keywords: high rise buildings, pressure coefficients, wind tunnel experiments, wind standard of tall buildings

Procedia PDF Downloads 243
11823 Study the Dynamic Behavior of Irregular Buildings by the Analysis Method Accelerogram

Authors: Beciri Mohamed Walid

Abstract:

Some architectural conditions required some shapes often lead to an irregular distribution of masses, rigidities and resistances. The main object of the present study consists in estimating the influence of the irregularity both in plan and in elevation which presenting some structures on the dynamic characteristics and his influence on the behavior of this structures. To do this, it is necessary to make apply both dynamic methods proposed by the RPA99 (spectral modal method and method of analysis by accelerogram) on certain similar prototypes and to analyze the parameters measuring the answer of these structures and to proceed to a comparison of the results.

Keywords: structure, irregular, code, seismic, method, force, period

Procedia PDF Downloads 279
11822 Seismic Behaviour of Bi-Symmetric Buildings

Authors: Yogendra Singh, Mayur Pisode

Abstract:

Many times it is observed that in multi-storeyed buildings the dynamic properties in the two directions are similar due to which there may be a coupling between the two orthogonal modes of the building. This is particularly observed in bi-symmetric buildings (buildings with structural properties and periods approximately equal in the two directions). There is a swapping of vibrational energy between the modes in the two orthogonal directions. To avoid this coupling the draft revision of IS:1893 proposes a minimum separation of more than 15% between the frequencies of the fundamental modes in the two directions. This study explores the seismic behaviour of bi-symmetrical buildings under uniaxial and bi-axial ground motions. For this purpose, three different types of 8 storey buildings symmetric in plan are modelled. The first building has square columns, resulting in identical periods in the two directions. The second building, with rectangular columns, has a difference of 20% in periods in orthogonal directions, and the third building has half of the rectangular columns aligned in one direction and other half aligned in the other direction. The numerical analysis of the seismic response of these three buildings is performed by using a set of 22 ground motions from PEER NGA database and scaled as per FEMA P695 guidelines to represent the same level of intensity corresponding to the Design Basis Earthquake. The results are analyzed in terms of the displacement-time response of the buildings at roof level and corresponding maximum inter-storey drift ratios.

Keywords: bi-symmetric buildings, design code, dynamic coupling, multi-storey buildings, seismic response

Procedia PDF Downloads 212
11821 Low-Level Forced and Ambient Vibration Tests on URM Building Strengthened by Dampers

Authors: Rafik Taleb, Farid Bouriche, Mehdi Boukri, Fouad Kehila

Abstract:

The aim of the paper is to investigate the dynamic behavior of an unreinforced masonry (URM) building strengthened by DC-90 dampers by ambient and low-level forced vibration tests. Ambient and forced vibration techniques are usually applied to reinforced concrete or steel buildings to understand and identify their dynamic behavior, however, less is known about their applicability for masonry buildings. Ambient vibrations were measured before and after strengthening of the URM building by DC-90 dampers system. For forced vibration test, a series of low amplitude steady state harmonic forced vibration tests were conducted after strengthening using eccentric mass shaker. The resonant frequency curves, mode shapes and damping coefficients as well as stress distribution in the steel braces of the DC-90 dampers have been investigated and could be defined. It was shown that the dynamic behavior of the masonry building, even if not regular and with deformable floors, can be effectively represented. It can be concluded that the strengthening of the building does not change the dynamic properties of the building due to the fact of low amplitude excitation which do not activate the dampers.

Keywords: ambient vibrations, masonry buildings, forced vibrations, structural dynamic identification

Procedia PDF Downloads 373
11820 A Thermodynamic Solution for the Static and Dynamic Characteristics of a Two-Lobe Journal Bearing

Authors: B. Chetti, W. A. Crosby

Abstract:

The work described in this paper is an investigation of the static and dynamic characteristics of two-lobe journal bearings taking into consideration the thermal effects. A thermo-hydrodynamic solution of a finite two-lobe journal bearing is performed by solving the generalized form Reynolds equation with the energy equation, taking into consideration viscosity variation across the film thickness. The static and dynamic characteristics were numerically obtained. The results are evaluated for different values of viscosity-temperature coefficient and Peclet number. The results show that considering the thermal effects in the solution of the two-lobe journal bearing has a marked on the study of its stability.

Keywords: two-lobe bearing, thermal effect, static, dynamic characteristics

Procedia PDF Downloads 352
11819 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 271
11818 Solutions for Comfort and Safety on Vibrations Resulting from the Action of the Wind on the Building in the Form of Portico with Four Floors

Authors: G. B. M. Carvalho, V. A. C. Vale, E. T. L. Cöuras Ford

Abstract:

With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.

Keywords: dynamic vibration absorber, structure, comfort, safety, wind behavior, structure

Procedia PDF Downloads 376
11817 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 189
11816 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement

Authors: Khaing Su Su Than, Hibino Yo

Abstract:

Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.

Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures

Procedia PDF Downloads 117
11815 Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation

Authors: Jhe-Hao Huang, Kun-Da Wu, Wei-Cheng Shih, Jui-Pin Hung

Abstract:

This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: contact stiffness, dynamic characteristics, spindle, tool holder interface

Procedia PDF Downloads 264
11814 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: artificial intelligence, earthquake, performance, reinforced concrete

Procedia PDF Downloads 437
11813 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 111
11812 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 460
11811 EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids

Authors: B. Chetti, W. A. Crosby

Abstract:

This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.

Keywords: journal bearing, elastohydrodynamic, stability, couple stress

Procedia PDF Downloads 334
11810 Research on Transmission Parameters Determination Method Based on Dynamic Characteristic Analysis

Authors: Baoshan Huang, Fanbiao Bao, Bing Li, Lianghua Zeng, Yi Zheng

Abstract:

Parameter control strategy based on statistical characteristics can analyze the choice of the transmission ratio of an automobile transmission. According to the difference of the transmission gear, the number and spacing of the gear can be determined. Transmission ratio distribution of transmission needs to satisfy certain distribution law. According to the statistic characteristics of driving parameters, the shift control strategy of the vehicle is analyzed. CVT shift schedule adjustment algorithm based on statistical characteristic parameters can be seen from the above analysis, if according to the certain algorithm to adjust the size of, can adjust the target point are in the best efficiency curve and dynamic curve between the location, to alter the vehicle characteristics. Based on the dynamic characteristics and the practical application of the vehicle, this paper presents the setting scheme of the transmission ratio.

Keywords: vehicle dynamics, transmission ratio, transmission parameters, statistical characteristics

Procedia PDF Downloads 362
11809 Numerical Investigation of Supertall Buildings and Using Aerodynamic Characteristics to Create New Wind Power Sources

Authors: Mohammad A. Masoumi, Mohammad Zare, Soroush Sabouki

Abstract:

This study investigates the aerodynamic characteristics of supertall buildings to evaluate wind turbine installation at high altitudes. Most recent studies have investigated supertall buildings at a horizontal plane, while a vertical plan could be as important, especially to install wind turbines. A typical square-plan building with a height of 500 m is investigated numerically at horizontal and vertical plans to evaluate wind power generation potentials. The results show good agreement with experimental data and past studies. Then four new geometries are proposed to improvise regions at high altitudes to install wind turbines. Evaluating the simulations shows two regions with high power density, which have the possibility to install wind turbines. Results show that improvised regions to install wind turbines at high altitudes contain significant power density while higher power density is found behind buildings in a far distance. In addition, power density fluctuations behind buildings are investigated, which show decreasing fluctuations by reaching 50 m altitude while altitudes lower than 20 m have the most fluctuations.

Keywords: wind power, supertall building, power density, aerodynamic characteristics, wind turbine mobile, quality assurance, testing, applications

Procedia PDF Downloads 137
11808 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 317
11807 The Necessity of Retrofitting for Masonry Buildings in Turkey

Authors: Soner Güler, Mustafa Gülen, Eylem Güzel

Abstract:

Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey.

Keywords: masonry buildings, earthquake effects, seismic retrofitting techniques, seismic performance

Procedia PDF Downloads 308
11806 Human-Induced Vibration and Degree of Human Comfortability Analysis of Intersection Pedestrian Bridge

Authors: Yaowen Sheng, Jiuxian Liu

Abstract:

In order to analyze the pedestrian bridge dynamic characteristics and degree of comfortability, the finite element method and live load time history method is used to calculate the dynamic response of the bridge. The example bridge’s dynamic characteristics and degree of human comfortability need to be analyzed. The project background is a three-way intersection. The intersection has three side blocks. An intersection bridge is designed to help people cross the streets. The finite element model of the bridge is established by the Midas/Civil software, and the analysis of the model is done. The strength, stiffness, and stability checks are also completed. Apart from the static analysis of the bridge, the dynamic analysis of the bridge is also completed to avoid the problems resulted from vibrations. The results show that the pedestrian bridge has different dynamic characteristics compared to other normal bridges. The degree of human comfortability satisfies the requirements of Chinese and British specifications. The live load time history method can be used to calculate the dynamic response of the bridge.

Keywords: pedestrian bridge, steel box girder, human-induced vibration, finite element analysis, degree of human comfortability

Procedia PDF Downloads 132
11805 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 461
11804 Dynamic Modeling of the Green Building Movement in the U.S.: Strategies to Reduce Carbon Footprint of Residential Building Stock

Authors: Nuri Onat, Omer Tatari, Gokhan Egilmez

Abstract:

The U.S. buildings consume significant amount of energy and natural resources and they are responsible for approximately 40 % of the greenhouse gases emitted in the United States. Awareness of these environmental impacts paved the way for the adoption of green building movement. The green building movement is a rapidly increasing trend. Green Construction market has generated $173 billion dollars in GDP, supported over 2.4 million jobs, and provided $123 billion dollars in labor earnings. The number of LEED certified buildings is projected to be almost half of the all new, nonresidential buildings by 2015. National Science and Technology Council (NSTC) aims to increase number of net-zero energy buildings (NZB). The ultimate goal is to have all commercial NZB by 2050 in the US (NSTC 2008). Green Building Initiative (GBI) became the first green building organization that is accredited by American National Standards Institute (ANSI), which will also boost number of green buildings certified by Green Globes. However, there is much less focus on greening the residential buildings, although the environmental impacts of existing residential buildings are more than that of commercial buildings. In this regard, current research aims to model the residential green building movement with a dynamic model approach and assess the possible strategies to stabilize the carbon footprint of the U.S. residential building stock. Three aspects of sustainable development are considered in policy making, namely: high performance green building (HPGB) construction, NZB construction and building retrofitting. 19 different policy options are proposed and analyzed. Results of this study explored that increasing the construction rate of HPGBs or NZBs is not a sufficient policy to stabilize the carbon footprint of the residential buildings. Energy efficient building retrofitting options are found to be more effective strategies then increasing HPGBs and NZBs construction. Also, significance of shifting to renewable energy sources for electricity generation is stressed.

Keywords: green building movement, residential buildings, carbon footprint, system dynamics

Procedia PDF Downloads 393
11803 A Review of BIM Applications for Heritage and Historic Buildings: Challenges and Solutions

Authors: Reza Yadollahi, Arash Hejazi, Dante Savasta

Abstract:

Building Information Modeling (BIM) is growing so fast in construction projects around the world. Considering BIM's weaknesses in implementing existing heritage and historical buildings, it is critical to facilitate BIM application for such structures. One of the pieces of information to build a model in BIM is to import material and its characteristics. Material library is essential to speed up the entry of project information. To save time and prevent cost overrun, a BIM object material library should be provided. However, historical buildings' lack of information and documents is typically a challenge in renovation and retrofitting projects. Due to the lack of case documents for historic buildings, importing data is a time-consuming task, which can be improved by creating BIM libraries. Based on previous research, this paper reviews the complexities and challenges in BIM modeling for heritage, historic, and architectural buildings. Through identifying the strengths and weaknesses of the standard BIM systems, recommendations are provided to enhance the modeling platform.

Keywords: building Information modeling, historic, heritage buildings, material library

Procedia PDF Downloads 68