Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17944

Search results for: human concept learning

13204 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 201
13203 A Comparative Analysis of the Enforceability of Social and Economic Rights: Nigeria and South Africa as Case Studies

Authors: Foluke Abimbola

Abstract:

There are two separate groups of a recognised body of human rights. These are known as Civil and Political Rights, and Economic and Social Rights. There is however an impression that civil and political rights are enforceable in courts while socio-economic rights are not. Nigeria is an example of one of such countries whose constitution has social, economic and cultural rights’ provisions as well as civil and political rights. However, the socio-economic rights provided in the Nigerian constitution are not justiciable or are unenforceable in a court of law. On the other hand, a comparative examination of the socio-economic right provisions in the South African constitution and judgments of the constitutional court of South Africa reveals that socio-economic rights may be enforceable. This position may ensure the protection of the socio-economic rights of the poor and vulnerable groups. These rights include the rights to food, adequate shelter, health, and education. Moreover, the African Charter on Human and Peoples’ Rights (African Charter) which incorporates similar socio-economic right provisions, has been recognized as a domestic law in Nigeria and its provisions are enforceable by the domestic courts by virtue of the African Charter on Human and People’s Rights (Ratification and Enforcement) Act Cap A9 Laws of the Federation of Nigeria 2004. It is not only a regional treaty signed and adopted by Nigeria but has been passed into law by the National Assembly and can be enforced like any other local law. This paper will propose that in view of the provisions of the African Charter and mechanisms for implementation as well as other international conventions and national constitutional provisions on human rights, domestic courts may be able to assess state responsibilities in the light of socio-economic rights. Cases decided by South African courts and other jurisdictions will be discussed in order to lend weight to the notion that socio-economic rights can be enforced in jurisdictions such as Nigeria even though the constitution provides otherwise.

Keywords: african charter, constitutional court of south africa, nigerian constitution, socio-economic rights, south african constitution

Procedia PDF Downloads 155
13202 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 147
13201 Model Development for Real-Time Human Sitting Posture Detection Using a Camera

Authors: Jheanel E. Estrada, Larry A. Vea

Abstract:

This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.

Keywords: posture, spinal points, gyroscope, image processing, ergonomics

Procedia PDF Downloads 333
13200 Existential Concerns and Related Manifestations of Higher Learning Institution Students in Ethiopia: A Case Study of Aksum University

Authors: Ezgiamn Abraha Hagos

Abstract:

The primary objective of this study was to assess the existential concerns and related manifestations of higher learning students by investigating their perception of meaningful life and evaluating their purpose in life. In addition, this study was aimed at assessing the manifestations of existential pain among the students. Data was procured using Purpose in Life test (PIL), Well-being Manifestation Measure Scale (WBMMS), and focus group discussion. The total numbers of participants was 478, of which 299 were males and the remaining 179 females. They were selected using a simple random sampling technique. Data was analyzed using two ways. SPSS-version 20 was used to analyze the quantitative part, and narrative modes were utilized to analyze the qualitative data. The research finding revealed that students are involved in risk taking behaviors like alcohol ingestion, drug use, Khat (chat) chewing, and unsafe sex. In line with this it is found out that life in campus was perceived as temporary and as a result the sense of hedonism was prevalent at any cost. Of course, the most important thing for the majority of the students was to know about the purpose of life. Regarding WBMMS, there was no statistically significant difference among males and females and with the exception of the sub-scale of happiness; in all the sub-scales the mean is low. At last, assisting adolescents to develop holistically in terms of body, mind, and spirit is recommended.

Keywords: existential concerns, higher learning institutions, Ethiopia, Aksum University

Procedia PDF Downloads 433
13199 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 187
13198 An Interactive Platform Displaying Mixed Reality Media

Authors: Alfred Chen, Cheng Chieh Hsu, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

This study is attempted to construct a human-computer interactive platform system that has mainly consisted of an augmented hardware system, a software system, a display table, and mixed media. This system has provided with human-computer interaction services through an interactive platform for the tourism industry. A well designed interactive platform, integrating of augmented reality and mixed media, has potential to enhance museum display quality and diversity. Besides, it will create a comprehensive and creative display mode for most museums and historical heritages. Therefore, it is essential to let public understand what the platform is, how it functions, and most importantly how one builds an interactive augmented platform. Hence the authors try to elaborate the construction process of the platform in detail. Thus, there are three issues to be considered, i.e.1) the theory and application of augmented reality, 2) the hardware and software applied, and 3) the mixed media presented. In order to describe how the platform works, Courtesy Door of Tainan Confucius Temple has been selected as case study in this study. As a result, a developed interactive platform has been presented by showing the physical entity object, along with virtual mixing media such as text, images, animation, and video. This platform will result in providing diversified and effective information that will be delivered to the users.

Keywords: human-computer interaction, mixed reality, mixed media, tourism

Procedia PDF Downloads 493
13197 Influence of Readability of Paper-Based Braille on Vertical and Horizontal Dot Spacing in Braille Beginners

Authors: K. Doi, T. Nishimura, H. Fujimoto

Abstract:

The number of people who become visually impaired and do not have sufficient tactile experiences has increased by various disease. Especially, many acquired visually impaired persons due to accidents, disorders, and aging cannot adequately read Braille. It is known that learning Braille requires a great deal of time and the acquisition of various skills. In our previous studies, we reported one of the problems in learning Braille. Concretely, the standard Braille size is too small for Braille beginners. And also we are short of the objective data regarding easily readable Braille size. Therefore, it is necessary to conduct various experiments for evaluating Braille size that would make learning easier for beginners. In this study, for the purpose of investigating easy-to-read conditions of vertical and horizontal dot spacing for beginners, we conducted one Braille reading experiment. In this our experiment, we prepared test pieces by use of our original Braille printer with controlling function of Braille size. We specifically considered Braille beginners with acquired visual impairments who were unfamiliar with Braille. Therefore, ten sighted subjects with no experience of reading Braille participated in this experiment. Size of vertical and horizontal dot spacing was following conditions. Each dot spacing was 2.0, 2.3, 2.5, 2.7, 2.9, 3.1mm. The subjects were asked to read one Braille character with controlled Braille size. The results of this experiment reveal that Braille beginners can read Braille accurately and quickly when both vertical and horizontal dot spacing are 3.1 mm or more. This knowledge will be helpful data in considering Braille size for acquired visually impaired persons.

Keywords: paper-based Braille, vertical and horizontal dot spacing, readability, acquired visual impairment, Braille beginner

Procedia PDF Downloads 183
13196 The Use of Voice in Online Public Access Catalog as Faster Searching Device

Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu

Abstract:

Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.

Keywords: OPAC, voice, searching, faster

Procedia PDF Downloads 350
13195 Technoscience in the Information Society

Authors: A. P. Moiseeva, Z. S. Zavyalova

Abstract:

This paper focuses on the Technoscience phenomenon and its role in modern society. It gives a review of the latest research on Technoscience. Based on the works of Paul Forman, Bernadette Bensaude-Vincent, Bruno Latour, Maria Caramez Carlotto and others, the authors consider the concept of Technoscience, its specific character and prospects of its development.

Keywords: technoscience, information society, transdisciplinarity, European Technology Platforms

Procedia PDF Downloads 668
13194 Striking a Balance between Certainty and Flexibility: The Role of Ubuntu in South African Contract Law

Authors: Yeukai Mupangavanhu

Abstract:

The paper examines the concept of ubuntu and the extent to which it can play a role in ensuring fairness and justice in contractual relationships. Courts are expected to balance sanctity of contract and fairness. Public policy is currently a mechanism which is used by courts when balancing the above two competing interests. It, however, generally favours the freedom and sanctity of contract. The question which is addressed in this paper is whether the concept of ubuntu is an alternative mechanism that may be used to mitigate the sometimes harsh and unfair consequences of the doctrine of freedom and sanctity of contract. A comparative study and case analysis is the methodology that is used in this article. Unfairness in contracts is generally related to the problem of inequality in bargaining power underscored by deeply entrenched social and economic inequalities that are a consequence of apartheid and patriarchy. The transformative nature of the constitution demands the inclusion of African legal ideas and values in the legal order. There is a need for the harmonisation of western ideals which are based on the classical model of law of contract with relevant African principles. In order to attain a transformative legal order that promotes a societal transformation and enhances the lives of everyone courts cannot continue to frown upon African values. Ubuntu has the potential of steering the law of contract in a more equitable direction. The substantive rules of contract law undoubtedly need to be infused with the notion of ubuntu. The reconciliation of Western and African values is at the heart of legal transformation.

Keywords: fairness, sanctity of contract, contractual justice, transformative constitutionalism

Procedia PDF Downloads 257
13193 After Schubert’s Winterreise: Contemporary Aesthetic Journeys

Authors: Maria de Fátima Lambert

Abstract:

Following previous studies about Writing and Seeing, this paper focuses on the aesthetic assumptions within the concept of Winter Journey (Voyage d’Hiver/Winterreise) both in Georges Perec’s Saga and the Oulipo Group vis-à-vis with the creations by William Kentridge and Michael Borremans. The aesthetic and artistic connections are widespread. Nevertheless, we can identify common poetical principles shared by these different authors, not only according to the notion of ekphrasis, but also following the procedures of contemporary creation in literature and visual arts. The analysis of the ongoing process of the French writers as individuals and as group and the visual artists’ acting might contribute for another crossed definition of contemporary conception. The same title/theme was a challenge and a goal for them. Let’s wonder how deep the concept encouraged them and which symbolic upbringings were directing their poetical achievements. The idea of an inner journey became the main point, and got “over” and “across” a shared path worth to be followed. The authors were chosen due to the resilient contents of their visual and written images, and looking for the reasons that might had driven their conceptual basis to be. In Pérec’s “Winter Journey” as for the following fictions by Jacques Roubaud, Hervé le Tellier, Jacques Jouet and Hugo Vernier (that emerges from Perec’s fiction and becomes a real author) powerful aesthetic and enigmatic reflections grow connected with a poetic (and aesthetic) understanding of Walkscapes. They might be assumed as ironic fictions and poetical drifts. Outstanding from different logics, the overwhelming impact of Winterreise Lied by Schubert after Wilhelm Müller’s poems is a major reference in present authorship creations. Both Perec and Oulipo’s author’s texts are powerfully ekphrastic, although we should not forget they follow goals, frameworks and identities. When acting as a reader, they induce powerful imageries - cinematic or cinematographic - that flow in our minds. It was well-matched with William Kentridge animated video Winter Journey (2014) and the creations (sharing the same title) of Michael Borremans (2014) for the KlaraFestival, Bozar, Cité de la musique, in Belgium. Both were taken by the foremost Schubert’s Winterreise. Several metaphors fulfil new Winter Journeys (or Travels) that were achieved in contemporary art and literature, as it once succeeded in the 19th century. Maybe the contemporary authors and artists were compelled by the consciousness of nothingness, although outstanding different aesthetics and ontological sources. The unbearable knowledge of the road’s end, and also the urge of fulfilling the void might be a common element to all of them. As Schopenhauer once wrote, after all, Art is the only human subjective power that we can call upon in life. These newer aesthetic meanings, released from these winter journeys are surely open to wider approaches that might happen in other poetic makings to be.

Keywords: Aesthetic, voyage D’Hiver, George Perec & Oulipo, William Kentridge & Michael Borreman, Schubert's Winterreise

Procedia PDF Downloads 212
13192 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 41
13191 Predicting Daily Patient Hospital Visits Using Machine Learning

Authors: Shreya Goyal

Abstract:

The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.

Keywords: machine learning, SVM, HIPAA, data

Procedia PDF Downloads 68
13190 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression

Procedia PDF Downloads 184
13189 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration

Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen

Abstract:

In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.

Keywords: administrative law, algorithmic decision-making, decision support, public law

Procedia PDF Downloads 222
13188 The Effects of Irregular Immigration Originating from Syria on Turkey's Security Issues

Authors: Muzaffer Topgul, Hasan Atac

Abstract:

After the September 11 attacks, fight against terrorism has risen to higher levels in security concepts of the countries. The following reactions of some nation states have led to the formation of unstable areas in different parts of the World. Especially, in Iraq and Syria, the influences of radical groups have risen with the weakening of the central governments. Turkey (with the geographical proximity to the current crisis) has become a stop on the movement of people who were displaced because of terrorism. In the process, the policies of the Syrian regime resulted in a civil war which is still going on since 2011, and remain as an unresolved crisis. With the extension of the problem, changes occurred in foreign policies of the World Powers; moreover, the ongoing effects of the riots, conflicts of interests of foreign powers, conflicts in the region because of the activities of radical groups increased instability within the country. This case continues to affect the security of Turkey, particularly illegal immigration. It has exceeded the number of two million Syrians who took refuge in Turkey due to the civil war, while continuing uncertainty about the legal status of asylum seekers, besides the security problems of asylum-seekers themselves, there are problems in education, health and communication (language) as well. In this study, we will evaluate the term of immigration through the eyes of national and international law, place the disorganized and illegal immigration in security sphere, and define the elements/components of irregular migration within the changing security concept. Ultimately, this article will assess the effects of the Syrian refuges to Turkey’s short-term, mid-term, and long-term security in the light of the national and international data flows and solutions will be presented to the ongoing problem. While explaining the security problems the data and the donnees obtained from the nation and international corporations will be examined thorough the human security dimensions such as living conditions of the immigrants, the ratio of the genders, especially birth rate occasions, the education circumstances of the immigrant children, the effects of the illegal passing on the public order. In addition, the demographic change caused by the immigrants will be analyzed, the changing economical conditions where the immigrants mostly accumulate, and their participation in public life will be worked on and the economical obstacles sourcing due to irregular immigration will be clarified. By the entire datum gathered from the educational, cultural, social, economic, demographical extents, the regional factors affecting the migration and the role of irregular migration in Turkey’s future security will be revealed by implication to current knowledge sources.

Keywords: displaced people, human security, irregular migration, refugees

Procedia PDF Downloads 311
13187 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 194
13186 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 20
13185 Fragment Domination for Many-Objective Decision-Making Problems

Authors: Boris Djartov, Sanaz Mostaghim

Abstract:

This paper presents a number-based dominance method. The main idea is how to fragment the many attributes of the problem into subsets suitable for the well-established concept of Pareto dominance. Although other similar methods can be found in the literature, they focus on comparing the solutions one objective at a time, while the focus of this method is to compare entire subsets of the objective vector. Given the nature of the method, it is computationally costlier than other methods and thus, it is geared more towards selecting an option from a finite set of alternatives, where each solution is defined by multiple objectives. The need for this method was motivated by dynamic alternate airport selection (DAAS). In DAAS, pilots, while en route to their destination, can find themselves in a situation where they need to select a new landing airport. In such a predicament, they need to consider multiple alternatives with many different characteristics, such as wind conditions, available landing distance, the fuel needed to reach it, etc. Hence, this method is primarily aimed at human decision-makers. Many methods within the field of multi-objective and many-objective decision-making rely on the decision maker to initially provide the algorithm with preference points and weight vectors; however, this method aims to omit this very difficult step, especially when the number of objectives is so large. The proposed method will be compared to Favour (1 − k)-Dom and L-dominance (LD) methods. The test will be conducted using well-established test problems from the literature, such as the DTLZ problems. The proposed method is expected to outperform the currently available methods in the literature and hopefully provide future decision-makers and pilots with support when dealing with many-objective optimization problems.

Keywords: multi-objective decision-making, many-objective decision-making, multi-objective optimization, many-objective optimization

Procedia PDF Downloads 94
13184 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 548
13183 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation

Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen

Abstract:

Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.

Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning

Procedia PDF Downloads 79
13182 Analysis of the Relationship between Micro-Regional Human Development and Brazil's Greenhouse Gases Emission

Authors: Geanderson Eduardo Ambrósio, Dênis Antônio Da Cunha, Marcel Viana Pires

Abstract:

Historically, human development has been based on economic gains associated with intensive energy activities, which often are exhaustive in the emission of Greenhouse Gases (GHGs). It requires the establishment of targets for mitigation of GHGs in order to disassociate the human development from emissions and prevent further climate change. Brazil presents itself as one of the most GHGs emitters and it is of critical importance to discuss such reductions in intra-national framework with the objective of distributional equity to explore its full mitigation potential without compromising the development of less developed societies. This research displays some incipient considerations about which Brazil’s micro-regions should reduce, when the reductions should be initiated and what its magnitude should be. We started with the methodological assumption that human development and GHGs emissions arise in the future as their behavior was observed in the past. Furthermore, we assume that once a micro-region became developed, it is able to maintain gains in human development without the need of keep growing GHGs emissions rates. The human development index and the carbon dioxide equivalent emissions (CO2e) were extrapolated to the year 2050, which allowed us to calculate when the micro-regions will become developed and the mass of GHG’s emitted. The results indicate that Brazil must throw 300 GT CO2e in the atmosphere between 2011 and 2050, of which only 50 GT will be issued by micro-regions before it’s develop and 250 GT will be released after development. We also determined national mitigation targets and structured reduction schemes where only the developed micro-regions would be required to reduce. The micro-region of São Paulo, the most developed of the country, should be also the one that reduces emissions at most, emitting, in 2050, 90% less than the value observed in 2010. On the other hand, less developed micro-regions will be responsible for less impactful reductions, i.e. Vale do Ipanema will issue in 2050 only 10% below the value observed in 2010. Such methodological assumption would lead the country to issue, in 2050, 56.5% lower than that observed in 2010, so that the cumulative emissions between 2011 and 2050 would reduce by 130 GT CO2e over the initial projection. The fact of associating the magnitude of the reductions to the level of human development of the micro-regions encourages the adoption of policies that favor both variables as the governmental planner will have to deal with both the increasing demand for higher standards of living and with the increasing magnitude of reducing emissions. However, if economic agents do not act proactively in local and national level, the country is closer to the scenario in which emits more than the one in which mitigates emissions. The research highlighted the importance of considering the heterogeneity in determining individual mitigation targets and also ratified the theoretical and methodological feasibility to allocate larger share of contribution for those who historically emitted more. It is understood that the proposals and discussions presented should be considered in mitigation policy formulation in Brazil regardless of the adopted reduction target.

Keywords: greenhouse gases, human development, mitigation, intensive energy activities

Procedia PDF Downloads 322
13181 English Learning Motivation in Communicative Competence

Authors: Sebastianus Menggo

Abstract:

The aim of communicative language teaching is to enable learners to communicate in the target language. Each learner is required to perform the micro and macro components in each utterance produced. Utterances produced must be in line with the understanding of competence and performance of each speaker. These are inter-depended. Competence and performance are obliged to be appeared proportionally in creating the utterances. The representative of competence and performance reflects the linguistics identity of a speaker in providing sentences in each certain language community. Each lexicon spoken may lead that interlocutor in comprehending the intentions utterances given. However proportional performance of both components in an utterance needed to be further elaborated. Finding appropriate gap between competence and performance components in a communicative competence must be supported positive response given by the learners.The learners’ inability to keep communicative competence proportionally is caused by inside and outside factors. The inside factors are certain lacks such as lack of self-confidence and lack of motivation which could make students feel ashamed to produce utterances, scared to make mistakes, and have no enough confidence. Knowing learner’s English learning motivation is an urgent variable to be considered in creating conducive atmosphere classroom which will raise the learners to do more toward the achievement of communicative competence. Meanwhile, the outside factor is related with the teacher. The teacher should be able to recognize the students’ problem in creating conducive atmosphere in the classroom that will raise the students’ ability to be an English speaker qualified. Moreover, the aim of this research is to know and describe the English learning motivation affecting students’ communicative competence of 48 students of XI grade of science program at catholic senior of Saint Ignasius Loyola Labuan Bajo, West Flores, Indonesia. Correlation design with purposive procedure applied in this research. Data were collected through questionnaire, interview, and students’ speaking achievement document. Result shows the description of motivation significantly affecting students’ communicative competence.

Keywords: communicative, competence, English, learning, motivation

Procedia PDF Downloads 204
13180 A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations

Authors: Muhammad Saqib Manzoor, Camille Dickson-Deane, Prashan Karunaratne

Abstract:

Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes.

Keywords: cobb-douglas production function, quasi-Delphi method, effective teaching and learning, 3D-visualisations

Procedia PDF Downloads 151
13179 Perusing the Influence of a Visual Editor in Enabling PostgreSQL Query Learn-Ability

Authors: Manuela Nayantara Jeyaraj

Abstract:

PostgreSQL is an Object-Relational Database Management System (ORDBMS) with an architecture that ensures optimal quality data management. But due to the shading growth of similar ORDBMS, PostgreSQL has not been renowned among the database user community. Despite having its features and in-built functionalities shadowed, PostgreSQL renders a vast range of utilities for data manipulation and hence calling for it to be upheld more among users. But introducing PostgreSQL in order to stimulate its advantageous features among users, mandates endorsing learn-ability as an add-on as the target groups considered consist of both amateur as well as professional PostgreSQL users. The scope of this paper deliberates providing easy contemplation of query formulations and flows through a visual editor designed according to user interface principles that standby to support every aspect of making PostgreSQL learn-able by self-operation and creation of queries within the visual editor. This paper tends to scrutinize the importance of choosing PostgreSQL as the working database environment, the visual perspectives that influence human behaviour and ultimately learning, the modes in which learn-ability can be provided via visualization and the advantages reaped by the implementation of the proposed system features.

Keywords: database, learn-ability, PostgreSQL, query, visual-editor

Procedia PDF Downloads 178
13178 Motivation and Quality Teaching of Chinese Language: Analysis of Secondary School Studies

Authors: Robyn Moloney, HuiLing Xu

Abstract:

Many countries wish to produce Asia-literate citizens, through language education. International contexts of Chinese language education are seeking pedagogical innovation to meet local contextual factors frequently holding back learner success. In multicultural Australia, innovative pedagogy is urgently needed to support motivation in sustained study, with greater strategic integration of technology. This research took a qualitative approach to identify need and solutions. The paper analyses strategies that three secondary school teachers are adopting to meet specific challenges in the Australian context. The data include teacher interviews, classroom observations and student interviews. We highlight the use of task-based learning and differentiated teaching for multilevel classes, and the role which digital technologies play in facilitating both areas. The strategy examples are analysed in reference both to a research-based framework for describing quality teaching, and to current understandings of motivation in language learning. The analysis of data identifies learning featuring deep knowledge, higher-order thinking, engagement, social support, utilisation of background knowledge, and connectedness, all of which work towards the learners having a sense of autonomy and an imagination of becoming an adult Chinese language user.

Keywords: Chinese pedagogy, digital technologies, motivation, secondary school

Procedia PDF Downloads 269
13177 Cavitas Sensors into Human Cavities: Soft-Contact Lens and Mouthguard Sensors

Authors: Kohji Mitsubayashi, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

‘Cavitas sensors’ attached to human body cavities such as a contact lens type and a mouthguard (‘no implantable', ‘no wearable’) attracted attention as self-detachable devices for daily medicine. In this contribution, the soft contact lens glucose sensor for tear sugar monitoring will be introduced. And the mouthguard sensor with dental materials integrated with Bluetooth low energy (BLE) wireless module for real-time monitoring of saliva glucose would also be demonstrated. In the near future, those self-detachable cavitas sensors are expected to improve quality of life in view of the aging of society.

Keywords: cavitas sensor, biosensor, contact lens, mouthguard

Procedia PDF Downloads 289
13176 APP-Based Language Teaching Using Mobile Response System in the Classroom

Authors: Martha Wilson

Abstract:

With the peak of Computer-Assisted Language Learning slowly coming to pass and Mobile-Assisted Language Learning, at times, a bit lacking in the communicative department, we are now faced with a challenging question: How can we engage the interest of our digital native students and, most importantly, sustain it? As previously mentioned, our classrooms are now experiencing an influx of “digital natives” – people who have grown up using and having unlimited access to technology. While modernizing our curriculum and digitalizing our classrooms are necessary in order to accommodate this new learning style, it is a huge financial burden and a massive undertaking for language institutes. Instead, opting for a more compact, simple, yet multidimensional pedagogical tool may be the solution to the issue at hand. This paper aims to give a brief overview into an existing device referred to as Student Response Systems (SRS) and to expand on this notion to include a new prototype of response system that will be designed as a mobile application to eliminate the need for costly hardware and software. Additionally, an analysis into recent attempts by other institutes to develop the Mobile Response System (MRS) and customer reviews of the existing MRSs will be provided, as well as the lessons learned from those projects. Finally, while the new model of MRS is still in its infancy stage, this paper will discuss the implications of incorporating such an application as a tool to support and to enrich traditional techniques and also offer practical classroom applications with the existing response systems that are immediately available on the market.

Keywords: app, clickers, mobile app, mobile response system, student response system

Procedia PDF Downloads 372
13175 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 79