Search results for: language learning
5117 China Pakistan Economic Corridor: A Changing Mechanism in Pakistan
Authors: Komal Niazi, He Guoqiang
Abstract:
This paper is focused on ‘CPEC (China Pakistan Economic Corridor) a changing mechanism in Pakistan’. China Pakistan Economic Corridor (CPEC) activity under OBOR (One Belt One Road (OBOR) CPEC is a piece of the bigger umbrella and goes for giving another hallway of exchange for China and Pakistan and is relied upon to profit the entire of South Asian area. But this study reveals that significance of acculturation can never be overemphasized in the investigation of diverse impacts and the routes people groups of various ethnic personalities figure out how to adjust and acknowledge the social attributes of a larger part group in a multiethnic culture. This study also deals with the effects of acculturation which can be seen at multiple levels through CPEC for both Pakistani and Chinese people, who were working on this project. China and Pakistan exchanged the cultural and social patterns with each other. Probably the most perceptible gathering level impacts of cultural assimilation regularly incorporate changes in sustenance (food), clothing, and language. At the individual level, the procedure of cultural assimilation alludes to the socialization procedure by which the Pakistani local people and Chinese who were working in Pakistan adopted values, traditions, attitudes, states of mind, and practices. But China has imposed discourse through economic power and language. CPEC dominates Pakistan’s poor area’s and changes their living, social and cultural values. People also claimed this acculturation was a great threat to their cultural values and religious beliefs. Main findings of the study clearly ascertained that research was to find out the conceptual understanding of people about the acculturation process through CPEC. At the cultural level, aggregate activities and social organizations end up plainly adjusted, and at the behavioral level, there are changes in a person's day by day behavioral collection and some of the time in experienced anxiety. Anthropological data methods were used to collect data, like snowball and judgmental sampling, case studied methods.Keywords: CPEC, acculturation process, language discourse, social norms, cultural values, religious beliefs
Procedia PDF Downloads 2955116 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 825115 An Exploration of the Integration of Guided Play With Explicit Instruction in Early Childhood Mathematics
Authors: Anne Tan, Kok-Sing Tang, Audrey Cooke
Abstract:
Play has always been a prominent pedagogy in early childhood. However, there is growing evidence of success in students’ learning using explicit instruction, especially in literacy in the early years. There is also limited research using explicit instruction in early childhood mathematics, and play is usually prominently mentioned. This proposed research aims to investigate the possibilities and benefits of integrating guided play with explicit instruction in early childhood mathematics education. While play has traditionally been a prominent pedagogy in early childhood, there is growing evidence of success in student learning through explicit instruction, particularly in literacy. However, limited research exists on the integration of explicit instruction in early childhood mathematics, where play remains prominently mentioned. This study utilises a multiple case study methodology to gather data and provide immediate opportunities for curriculum improvement. The research will commence with semi-structured interviews to gain insights into educators' background knowledge. Highly structured observations will be conducted to record the frequency and manner in which guided play is integrated with specific elements of explicit instruction during mathematics teaching in early childhood. To enhance the observations, video recordings will be made using cameras with video settings and Microsoft Teams meeting recordings. In addition to interviews and observations, educators will maintain journals and use the Microsoft Teams platform for self-reflection on the integration of guided play and explicit instruction in their classroom practices and experiences. The study participants will include educators with early childhood degrees and students in years one and two. The primary goal of this research is to inform the benefits of integrating two high-impact pedagogies, guided play, and explicit instruction, for enhancing student learning outcomes in mathematics education. By exploring the integration of these pedagogical approaches, this study aims to contribute to the development of effective instructional strategies in early childhood mathematics education.Keywords: early childhood, early childhood mathematics, early childhood numbers, guided play, play-based learning, explicit instruction
Procedia PDF Downloads 685114 Like a Bridge over Troubled Waters: The Value of Joint Learning Programs in Intergroup Identity-Based Conflict in Israel
Authors: Rachelly Ashwall, Ephraim Tabory
Abstract:
In an attempt to reduce the level of a major identity-based conflict in Israel between Ultra-orthodox and secular Jews, several initiatives in recent years have tried to bring members of the two societies together in facilitated joint discussion forums. Our study analyzes the impact of two types of such programs: joint mediation training classes and confrontation-based learning programs that are designed to facilitate discussions over controversial issues. These issues include claims about an unequal shouldering of national obligations such as military service, laws requiring public observance of the Sabbath, and discrimination against women, among others. The study examines the factors that enabled the two groups to reduce their social distance, and increase their understanding of each other, and develop a recognition and tolerance of the other group's particular social identity. The research conducted over a course of two years involved observations of the activities of the groups, interviews with the participants, and analysis of the social media used by the groups. The findings demonstrate the progression from a mutual initial lack of knowledge about habits, norms, and attitudes of the out-group to an increasing desire to know, understand and more readily accept the identity of a previously rejected outsider. Participants manifested more respect, concern for and even affection for those whose identity initially led them to reject them out of hand. We discuss the implications for seemingly intractable identity-based conflict in fragile societies.Keywords: identity-based conflict, intergroup relations, joint mediation learning, out-group recognition, social identity
Procedia PDF Downloads 2565113 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm
Authors: J. S. Dhillon, K. K. Dhaliwal
Abstract:
In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization
Procedia PDF Downloads 4845112 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School
Authors: Ahlam A. Alghamdi
Abstract:
For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.Keywords: early learning, gender division, inclusion school, Saudi Arabia
Procedia PDF Downloads 1575111 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes
Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal
Abstract:
Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle
Procedia PDF Downloads 575110 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: motivation, online learning, pedagogy, podcast
Procedia PDF Downloads 1365109 Factors Affecting Expectations and Intentions of University Students in Educational Context
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: learning technology, instructional technology, mobile learning, technology
Procedia PDF Downloads 4565108 Teaching Children With Differential Learning Needs By Understanding Their Talents And Interests
Authors: Eunice Tan
Abstract:
The purpose of this presentation is to look at an alternative to the approach and methodologies of working with special needs. The strength-based approach to education embodies a paradigm shift. It is a strategy to move away from a deficit-based methodology which inadvertently may lead to an extensive list of things that the child cannot do or is unable to do. Today, many parents of individuals with special needs are focused on the child’s deficits rather than on his or her strengths. Even when parents Recognise and identify their child’s strengths to be valuable and wish to develop their abilities, they face the challenge that there are insufficient programs committed to supporting the development and improvement of such abilities. What is a strength-based approach in education? A strength-based approach in education focuses on students' positive qualities and contributions to class instead of the skills and abilities they may not have. Many schools are focused on the child’s special educational needs rather than the whole child. Parents interviewed have said that they have to engage external tutors to help hone in on their child’s interests and strengths.Keywords: differential learning needs, special needs, instructional style, talents
Procedia PDF Downloads 2005107 The Effect of Voice Recognition Dictation Software on Writing Quality in Third Grade Students: An Action Research Study
Authors: Timothy J. Grebec
Abstract:
This study investigated whether using a voice dictation software program (i.e., Google Voice Typing) has an impact on student writing quality. The research took place in a third-grade general education classroom in a suburban school setting. Because the study involved minors, all data was encrypted and deidentified before analysis. The students completed a series of writings prior to the beginning of the intervention to determine their thoughts and skill level with writing. During the intervention phase, the students were introduced to the voice dictation software, given an opportunity to practice using it, and then assigned writing prompts to be completed using the software. The prompts written by nineteen student participants and surveys of student opinions on writing established a baseline for the study. The data showed that using the dictation software resulted in a 34% increase in the response quality (compared to the Pennsylvania State Standardized Assessment [PSSA] writing guidelines). Of particular interest was the increase in students' proficiency in demonstrating mastery of the English language and conventions and elaborating on the content. Although this type of research is relatively no, it has the potential to reshape the strategies educators have at their disposal when instructing students on written language.Keywords: educational technology, accommodations, students with disabilities, writing instruction, 21st century education
Procedia PDF Downloads 795106 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks
Procedia PDF Downloads 1525105 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 615104 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa
Authors: Gae Hee Song
Abstract:
This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability
Procedia PDF Downloads 1305103 Date Palm Fruits from Oman Attenuates Cognitive and Behavioral Defects and Reduces Inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioral deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Date palm fruits contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani date palm fruits on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% Date palm fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analyzed. APPsw/Tg2576 mice that were fed a standard chow diet without dates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, PPsw/Tg2576 mice that were fed a diet containing 2% and 4% dates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Our results suggest that dietary supplementation with dates may slow the progression of cognitive and behavioral impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, date palm fruits, Oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 4255102 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 1855101 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1485100 Impact of Chess Intervention on Cognitive Functioning of Children
Authors: Ebenezer Joseph
Abstract:
Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.Keywords: chess, intelligence, creativity, children
Procedia PDF Downloads 2605099 Idea, Creativity, Design, and Ultimately, Playing with Mathematics
Authors: Yasaman Azarmjoo
Abstract:
Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence
Procedia PDF Downloads 975098 Optical Board as an Artificial Technology for a Peer Teaching Class in a Nigerian University
Authors: Azidah Abu Ziden, Adu Ifedayo Emmanuel
Abstract:
This study investigated the optical board as an artificial technology for peer teaching in a Nigerian university. A design and development research (DDR) design was adopted, which entailed the planning and testing of instructional design models adopted to produce the optical board. This research population involved twenty-five (25) peer-teaching students at a Nigerian university consisting of theatre arts, religion, and language education-related disciplines. Also, using a random sampling technique, this study selected eight (8) students to work on the optical board. Besides, this study introduced a research instrument titled lecturer assessment rubric containing 30-mark metrics for evaluating students’ teaching with the optical board. In this study, it was discovered that the optical board affords students acquisition of self-employment skills through their exposure to the peer teaching course, which is a teacher training module in Nigerian universities. It is evident in this study that students were able to coordinate their design and effectively develop the optical board without lecturer’s interference. This kind of achievement in this research shows that the Nigerian university curriculum had been designed with contents meant to spur students to create jobs after graduation, and effective implementation of the readily available curriculum contents is enough to imbue students with the needed entrepreneurial skills. It was recommended that the Federal Government of Nigeria (FGN) must discourage the poor implementation of Nigerian university curriculum and invest more in the betterment of the readily available curriculum instead of considering a synonymously acclaimed new curriculum for regurgitated teaching and learning process.Keywords: optical board, artificial technology, peer teaching, educational technology, Nigeria, Malaysia, university, glass, wood, electrical, improvisation
Procedia PDF Downloads 715097 Praxis-Oriented Pedagogies for Pre-Service Teachers: Teaching About and For Social Justice Through Equity Literature Circles
Authors: Joanne Robertson, Awneet Sivia
Abstract:
Preparing aspiring teachers to become advocates for social justice reflects a fundamental commitment for teacher education programs in Canada to create systemic educational change. The goal is ultimately to address inequities in K-12 education for students from multiple identity groups that have historically been marginalized and oppressed in schools. Social justice is described as an often undertheorized and vague concept in the literature, which increases the risk that teaching for social justice remains a lofty goal. Another concern is that the social justice agenda in teacher education in North America ignores pedagogies related to subject-matter knowledge and discipline-based teaching methods. The question surrounding how teacher education programs can address these issues forms the basis for the research undertaken in this study. The paper focuses on a qualitative research project that examines how an Equity Literature Circles (ELC) framework within a language arts methods course in a Bachelor of Education program may help pre-service teachers better understand the inherent relationship between literacy instructional practices and teaching about and for social justice. Grounded in the Freireian (2018) principle of praxis, this study specifically seeks to understand the impact of Equity Literature Circles on pre-service teachers’ understanding of current social justice issues (reflection), their development of professional competencies in literacy instruction (practice), and their identity as advocates of social justice (action) who address issues related to student diversity, equity, and human rights within the English Language Arts program. In this paper presentation, participants will be provided with an overview of the Equity Literature Circle framework, a summary of key findings and recommendations from the qualitative study, an annotated bibliography of suggested Young Adult novels, and opportunities for questions and dialogue.Keywords: literacy, language, equity, social justice, diversity, human rights
Procedia PDF Downloads 745096 Philippine National Police Strategies in the Implementation of 'Peace and Order Agenda for Transformation and Upholding of the Rule-Of-Law' Plan 2030
Authors: Ruby A. L. Espineli
Abstract:
The study assessed the Philippine National Police strategies in the implementation of ‘Peace and Order Agenda for Transformation and Upholding of the Rule-of-Law’ P.A.T.R.O.L Plan 2030. Its operational roadmap presents four perspectives which include resource management, learning and growth, process excellence; and community. Focused group discussion, observation, and distribution of survey questionnaire to selected PNP officers and community members were done to identify and describe the implementation, problems encountered and measures to address the problems of the PNP P.A.T.R.O.L Plan 2030. In resource management, PNP allocates most sufficient funds in providing service firearms, patrol vehicle, and internet connections. In terms of learning and growth, the attitude of PNP officers is relatively higher than their knowledge and skills. Moreover, in terms of process excellence, the PNP use several crime preventions and crime solution strategies to deliver an immediate response to calls of the community. As regards, community perspective, PNP takes effort in establishing partnership with community. It is also interesting to note that PNP officers and community were both undecided on the existence of problems encountered in the implementation of P.A.T.R.O.L Plan 2030. But, they had proactive behavior as they agreed on all the specified measures to address the problems encountered in implementation of PNP P.A.T.R.O.L. Plan 2030. A strategic framework, based on the findings was formulated in this study that could improve and entrench the harmonious working relationship between the PNP and stakeholders in the enhancement of the implementation of PNP P.A.T.R.O.L. Plan 2030.Keywords: community perspectives, learning and growth, process excellence, resource management
Procedia PDF Downloads 2375095 Unmet English Needs of the Non-Engineering Staff: The Case of Algerian Hydrocarbon Industry
Authors: N. Khiati
Abstract:
The present paper attempts to report on some findings that emerged out of a larger scale doctorate research into English language needs of a renowned Algerian company of Hydrocarbon industry. From a multifaceted English for specific purposes (ESP) research perspective, the paper considers the English needs of the finance/legal department staff in the midst of the conflicting needs perspectives involving both objective needs indicators (i.e., the pressure of globalised business) and the general negative attitudes among the administrative -mainly jurists- staff towards English (favouring a non-adaptation strategy). The researcher’s unearthing of the latter’s needs is an endeavour to concretise the concepts of unmet, or unconscious needs, among others. This is why, these initially uncovered hidden needs will be detailed questioning educational background, namely previous language of instruction; training experiences and expectations; as well as the actual communicative practices derived from the retrospective interviews and preliminary quantitative data of the questionnaire. Based on these rough clues suggesting real needs, the researcher will tentatively propose some implications for both pre-service and in-service training organisers as well as for educational policy makers in favour of an English course in legal English for the jurists mainly from pre-graduate phases to in-service training.Keywords: English for specific purposes (ESP), legal and finance staff, needs analysis, unmet/unconscious needs, training implications
Procedia PDF Downloads 1505094 Screen Casting Instead of Illegible Scribbles: Making a Mini Movie for Feedback on Students’ Scholarly Papers
Authors: Kerri Alderson
Abstract:
There is pervasive awareness by post secondary faculty that written feedback on course assignments is inconsistently reviewed by students. In order to support student success and growth, a novel method of providing feedback was sought, and screen casting - short, narrated “movies” of audio visual instructor feedback on students’ scholarly papers - was provided as an alternative to traditional means. An overview of the teaching and learning experience as well as the user-friendly software utilized will be presented. This study covers an overview of this more direct, student-centered medium for providing feedback using technology familiar to post secondary students. Reminiscent of direct personal contact, the personalized video feedback is positively evaluated by students as a formative medium for student growth in scholarly writing.Keywords: education, pedagogy, screen casting, student feedback, teaching and learning
Procedia PDF Downloads 1215093 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 835092 Motivations for Using Social Networking Sites by College Students for Educational Purposes
Authors: Kholoud H. Al-Zedjali, Abir S. Al-Harrasi, Ali H. Al-Badi
Abstract:
Recently there has been a dramatic proliferation in the number of social networking sites (SNSs) users; however, little is published about what motivates college students to use SNSs in education. The main goal of this research is to explore the college students’ motives for using SNSs in education. A conceptual framework has therefore been developed to identify the main factors that influence/motivate students to use social networking sites for learning purposes. To achieve the research objectives a quantitative method was used to collect data. A questionnaire has been distributed amongst college students. The results reveal that social influence, perceived enjoyment, institute regulation, perceived usefulness, ranking up-lift, attractiveness, communication tools, free of charge, sharing material and course nature all play an important role in the motivation of college students to use SNSs for learning purposes.Keywords: Social Networking Sites (SNSs), education, college students, motivations
Procedia PDF Downloads 2665091 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment
Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.Keywords: climate change, arabian sea, thermodynamics, machine learning
Procedia PDF Downloads 265090 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning
Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath
Abstract:
The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.Keywords: BLIP, fMRI, latent diffusion model, neural perception.
Procedia PDF Downloads 725089 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2075088 EFL Teachers’ Metacognitive Awareness as a Predictor of Their Professional Success
Authors: Saeedeh Shafiee Nahrkhalaji
Abstract:
Metacognitive knowledge increases EFL students’ ability to be successful learners. Although this relationship has been investigated by a number of scholars, EFL teachers’ explicit awareness of their cognitive knowledge has not been sufficiently explored. The aim of this study was to examine the role of EFL teachers’ metacognitive knowledge in their pedagogical performance. Furthermore, the role played by years of their academic education and teaching experience was also studied. Fifty female EFL teachers were selected. They completed Metacognitive Awareness Inventory (MAI) that assessed six components of metacognition including procedural knowledge, declarative knowledge, conditional knowledge, planning, evaluating, and management strategies. Near the end of the academic semester, the students of each class filled in ‘the Language Teacher Characteristics Questionnaire’ to evaluate their teachers’ pedagogical performance. Four elements of MAI, declarative knowledge, planning, evaluating, and management strategies were found to be significantly correlated with EFL teachers’ pedagogical success. Significant correlation was also established between metacognitive knowledge and EFL teachers’ years of academic education and teaching experience. The findings obtained from this research have contributing implication for EFL teacher educators. The discussion concludes by setting out directions for future research.Keywords: metacognotive knowledge, pedagogical performance, language teacher characteristics questionnaire, metacognitive awareness inventory
Procedia PDF Downloads 331