Search results for: RBF neural network modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6796

Search results for: RBF neural network modelling

2206 Location Tracking of Human Using Mobile Robot and Wireless Sensor Networks

Authors: Muazzam A. Khan

Abstract:

In order to avoid dangerous environmental disasters, robots are being recognized as good entrants to step in as human rescuers. Robots has been gaining interest of many researchers in rescue matters especially which are furnished with advanced sensors. In distributed wireless robot system main objective for a rescue system is to track the location of the object continuously. This paper provides a novel idea to track and locate human in disaster area using stereo vision system and ZigBee technology. This system recursively predict and updates 3D coordinates in a robot coordinate camera system of a human which makes the system cost effective. This system is comprised of ZigBee network which has many advantages such as low power consumption, self-healing low data rates and low cost.

Keywords: stereo vision, segmentation, classification, human tracking, ZigBee module

Procedia PDF Downloads 484
2205 Critical Activity Effect on Project Duration in Precedence Diagram Method

Authors: Salman Ali Nisar, Koshi Suzuki

Abstract:

Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.

Keywords: construction project management, critical path method, project scheduling, precedence diagram method

Procedia PDF Downloads 504
2204 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 191
2203 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 102
2202 A New Verification Based Congestion Control Scheme in Mobile Networks

Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj

Abstract:

A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.

Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain

Procedia PDF Downloads 435
2201 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 157
2200 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction

Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim

Abstract:

Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.

Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section

Procedia PDF Downloads 401
2199 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: climate change, downscaling, GCM, RCM

Procedia PDF Downloads 395
2198 Relationship between Physical Activity Level and Functional Movement in 16-years old Schoolchildren: A Multilevel Modelling Approach

Authors: Josip Karuc, Marjeta Mišigoj-Duraković, Goran Marković, Vedran Hadžić, Michael J. Duncan, Hrvoje Podnar, Maroje Sorić

Abstract:

As a part of the CRO-PALS longitudinal study, this investigation aimed to examine the association between different levels of physical activity (PA) and movement quality in 16-years old school children. The total number of participants in this research was 725. Movement quality was assessed via the Functional Movement Screen (FMSTM), and the PA level was estimated using the School Health Action, Planning, and Evaluation System (SHAPES) questionnaire. In addition, body fat and socioeconomic status (SES) were assessed. In order to investigate the association between total FMS score and different levels of PA, multilevel modeling was employed for boys (n=359) and girls (n=366) separately. All models were adjusted for age, body fat, and SES. Among boys, MVPA, MPA, and VPA were not significant predictors of the total FMS score (β=0.000, p=0.78; β=-0.002, p=0.455; β=0.004, p=0.158, respectively). On the contrary, among girls, VPA and MVPA showed significant effects on the total FMS score (β=0.011, p=0.001, β=0.005, p=0.006, respectively). The findings of this research provide evidence that the intensity of PA is a minor but relevant factor in describing the association between PA and movement quality in adolescent girls but not in boys. This means that the PA level does not guarantee optimal functional movement patterns. Therefore, practicing functional movement patterns in an isolated manner and at moderate to vigorous intensity could be beneficial in order to reduce the risk of injury incidence and potential orthopedic abnormalities in later life. This work was supported by the Croatian Science Foundation, grant no: IP-2016-06-9926 and grant no: DOK-2018-01-2328.

Keywords: functional movement screen, fundamental movement patterns, movement quality, pediatric

Procedia PDF Downloads 148
2197 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact

Authors: Edward Nartey

Abstract:

Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.

Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations

Procedia PDF Downloads 51
2196 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 140
2195 Swelling Behavior of Cross-Linked Poly (2-hydroxyethyl methacrylate)

Authors: Salah Hamri, Tewfik Bouchaour, Ulrich Maschke

Abstract:

The aim of this works is the study of swelling ratio of cross-linked polymer networks poly (2-hydroxyethyl methacrylate) (PHEMA). The system composed of erythrosine and Triethanolamine, in aqueous medium, is used as photo-initiator and 1,6-Hexanediol diacrylate as cross-linker. The analysis of UV-visible and infrared spectra, which were taken at different times during polymerization/cross linking, makes it possible to obtain useful information on the reaction mechanism. The swelling behavior was study by changing the nature of solvent, dye sensitizer (erythrosine, rose Bengal and eosin), and pH of the medium. The exploitation of experimental results using Fick diffusion model is also expected and shows a good correlation between theoretical and experimental results.

Keywords: cross-linker, photo-sensitizer, polymer network, swelling ratio

Procedia PDF Downloads 304
2194 Assessing the Imapact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study

Authors: Reet Bishnoi

Abstract:

Climate change poses a pressing global challenge, with far-reaching consequences for the planet's ecosystems and biodiversity. This abstract introduces the research topic, "Assessing the Impact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study," which delves into the intricate relationship between climate change and biodiversity in the world's most ecologically diverse regions. Biodiversity hotspots, characterized by their exceptionally high species richness and endemism, are under increasing threat due to rising global temperatures, altered precipitation patterns, and other climate-related factors. This research employs a multidisciplinary approach, incorporating ecological, climatological, and conservationist methodologies to comprehensively analyze the effects of climate change on these vital regions. Through a combination of field research, climate modelling, and ecological assessments, this study aims to elucidate the vulnerabilities of biodiversity hotspots and understand how changes in temperature and precipitation are affecting the diverse species and ecosystems that inhabit these areas. The research seeks to identify potential tipping points, assess the resilience of native species, and propose conservation strategies that can mitigate the adverse impacts of climate change on these critical regions. By illuminating the complex interplay between climate change and biodiversity hotspots, this research not only contributes to our scientific understanding of these issues but also informs policymakers, conservationists, and the public about the urgent need for coordinated efforts to safeguard our planet's ecological treasures. The outcomes of this multidisciplinary study are expected to play a pivotal role in shaping future climate policies and conservation practices, emphasizing the importance of protecting biodiversity hotspots for the well-being of the planet and future generations.

Keywords: climate change, biodiversity hotspots, ecological diversity, conservation, multidisciplinary study

Procedia PDF Downloads 61
2193 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling

Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel

Abstract:

Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is, then, important in a first step to optimize household consumption to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipment's starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So, the ceiling would no longer be fixed. The scheduling would be done on two scales, firstly, per dwelling, and secondly, at the level of a residential complex.

Keywords: smart grid, energy box, scheduling, Gang Model, energy consumption, energy management system, wireless sensor network

Procedia PDF Downloads 303
2192 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods

Authors: Bilal Tebboub, AmelLabbani

Abstract:

This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.

Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing

Procedia PDF Downloads 77
2191 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 287
2190 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 140
2189 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds

Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak

Abstract:

In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.

Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold

Procedia PDF Downloads 161
2188 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate

Authors: Malihe Ahmadi

Abstract:

Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.

Keywords: historical gardens, climate, properties of Iranian gardens, Iran

Procedia PDF Downloads 389
2187 Investigating Role of Traumatic Events in a Pakistani Sample

Authors: Khadeeja Munawar, Shamsul Haque

Abstract:

The claim that traumatic events influence the recalled memories and mental health has received mixed empirical support. This study examines the memories of a sample drawn from Pakistan, a country that has witnessed many life-changing socio-political events, wars, and natural disasters in 72 years of its history. A sample of 210 senior citizens (Mage = 64.35, SD = 6.33) was recruited from Pakistan. The aim was to investigate if participants retrieved more memories related to past traumatic events using a word-cueing technique. Each participant reported ten memories to ten neutral cue words. The results revealed that past traumatic events were not adversely affecting the memories and mental health of participants. When memories were plotted with respect to the ages at which the events happened, a pronounced bump at 11-20 years of age was seen. Memories within as well as outside of the bump were mostly positive. The multilevel logistic regression modelling showed that the memories recalled were personally important and played a role in enhancing resilience. The findings revealed that despite facing an array of ethnic, religious, political, economic, and social conflicts, the participants were resilient, recalled predominantly positive memories, and had intact mental health. The findings have clinical implications in Cognitive Behavioral Therapy (CBT). The patients can be made aware of their negative emotions, troublesome/traumatic memories, and the distorted thinking patterns and their memories can be restructured. The findings can also be used to teach Memory Specificity Training (MEST) by psycho-educating the patients around changes in memory functioning and enhancing the recall of memories, which are more specific, vivid, and filled with sensory details.

Keywords: cognitive behavioral therapy, memories, mental health, resilience, trauma

Procedia PDF Downloads 142
2186 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 486
2185 Highway Casualty Rate in Nigeria: Implication for Human Capital Development

Authors: Ali Maji

Abstract:

Highway development is an important factor for economic growth and development in both developed and developing countries. In Nigeria about two-third of transportation of goods and persons are done through highway network. It was this that made highway investment to enjoy position of relative high priority on the list of government expenditure programmes in Nigeria today. The paper noted that despite expansion of public investment in highway construction and maintenance of them, road traffic accident is increasing rate. This has acted as a drain of human capital which is a key to economic growth and development in Nigeria. In order to avoid this, the paper recommend introduction of Highway Safety Education (HSE) in Nigerian’s education system and investment in train transportation among other as a sure measure for curtailing highway accident.

Keywords: accident rate, high way development, human capital, national development

Procedia PDF Downloads 272
2184 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications

Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos

Abstract:

Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.

Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys

Procedia PDF Downloads 168
2183 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen

Abstract:

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004

Procedia PDF Downloads 439
2182 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 164
2181 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 343
2180 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil

Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau

Abstract:

The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.

Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction

Procedia PDF Downloads 73
2179 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 163
2178 Modelling Urban Rigidity and Elasticity Growth Boundaries: A Spatial Constraints-Suitability Based Perspective

Authors: Pengcheng Xiang Jr., Xueqing Sun, Dong Ngoduy

Abstract:

In the context of rapid urbanization, urban sprawl has brought about extensive negative impacts on ecosystems and the environment, resulting in a gradual shift from "incremental growth" to ‘stock growth’ in cities. A detailed urban growth boundary is a prerequisite for urban renewal and management. This study takes Shenyang City, China, as the study area and evaluates the spatial distribution of urban spatial suitability in the study area from the perspective of spatial constraints-suitability using multi-source data and simulates the future rigid and elastic growth boundaries of the city in the study area using the CA-Markov model. The results show that (1) the suitable construction area and moderate construction area in the study area account for 8.76% and 19.01% of the total area, respectively, and the suitable construction area and moderate construction area show a trend of distribution from the urban centre to the periphery, mainly in Shenhe District, the southern part of Heping District, the western part of Dongling District, and the central part of Dadong District; (2) the area of expansion of construction land in the study area in the period of 2023-2030 is 153274.6977hm2, accounting for 44.39% of the total area of the study area; (3) the rigid boundary of the study area occupies an area of 153274.6977 hm2, accounting for 44.39% of the total area of the study area, and the elastic boundary of the study area contains an area of 75362.61 hm2, accounting for 21.69% of the total area of the study area. The study constructed a method for urban growth boundary delineation, which helps to apply remote sensing to guide future urban spatial growth management and urban renewal.

Keywords: urban growth boundary, spatial constraints, spatial suitability, urban sprawl

Procedia PDF Downloads 19
2177 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 288