Search results for: removal and dose estimation
265 Method of Complex Estimation of Text Perusal and Indicators of Reading Quality in Different Types of Commercials
Authors: Victor N. Anisimov, Lyubov A. Boyko, Yazgul R. Almukhametova, Natalia V. Galkina, Alexander V. Latanov
Abstract:
Modern commercials presented on billboards, TV and on the Internet contain a lot of information about the product or service in text form. However, this information cannot always be perceived and understood by consumers. Typical sociological focus group studies often cannot reveal important features of the interpretation and understanding information that has been read in text messages. In addition, there is no reliable method to determine the degree of understanding of the information contained in a text. Only the fact of viewing a text does not mean that consumer has perceived and understood the meaning of this text. At the same time, the tools based on marketing analysis allow only to indirectly estimate the process of reading and understanding a text. Therefore, the aim of this work is to develop a valid method of recording objective indicators in real time for assessing the fact of reading and the degree of text comprehension. Psychophysiological parameters recorded during text reading can form the basis for this objective method. We studied the relationship between multimodal psychophysiological parameters and the process of text comprehension during reading using the method of correlation analysis. We used eye-tracking technology to record eye movements parameters to estimate visual attention, electroencephalography (EEG) to assess cognitive load and polygraphic indicators (skin-galvanic reaction, SGR) that reflect the emotional state of the respondent during text reading. We revealed reliable interrelations between perceiving the information and the dynamics of psychophysiological parameters during reading the text in commercials. Eye movement parameters reflected the difficulties arising in respondents during perceiving ambiguous parts of text. EEG dynamics in rate of alpha band were related with cumulative effect of cognitive load. SGR dynamics were related with emotional state of the respondent and with the meaning of text and type of commercial. EEG and polygraph parameters together also reflected the mental difficulties of respondents in understanding text and showed significant differences in cases of low and high text comprehension. We also revealed differences in psychophysiological parameters for different type of commercials (static vs. video, financial vs. cinema vs. pharmaceutics vs. mobile communication, etc.). Conclusions: Our methodology allows to perform multimodal evaluation of text perusal and the quality of text reading in commercials. In general, our results indicate the possibility of designing an integral model to estimate the comprehension of reading the commercial text in percent scale based on all noticed markers.Keywords: reading, commercials, eye movements, EEG, polygraphic indicators
Procedia PDF Downloads 166264 Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara
Authors: Hasan Atakan Sengul, Nergis Canturk, Bahar Erbas
Abstract:
Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body.Keywords: analyze of bisphenol-A, BPA, BPA in drinking water, BPA in urine
Procedia PDF Downloads 129263 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential
Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra
Abstract:
The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass
Procedia PDF Downloads 170262 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design
Procedia PDF Downloads 170261 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation
Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi
Abstract:
Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration
Procedia PDF Downloads 141260 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 304259 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite
Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu
Abstract:
Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils
Procedia PDF Downloads 135258 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies
Procedia PDF Downloads 389257 Trafficking of Women and Children and Solutions to Combat It: The Case of Nigeria
Authors: Olatokunbo Yakeem
Abstract:
Human trafficking is a crime against gross violations of human rights. Trafficking in persons is a severe socio-economic dilemma that affects the national and international dimensions. Human trafficking or modern-day-slavery emanated from slavery, and it has been in existence before the 6ᵗʰ century. Today, no country is exempted from dehumanizing human beings, and as a result, it has been an international issue. The United Nations (UN) presented the International Protocol to fight human trafficking worldwide, which brought about the international definition of human trafficking. The protocol is to prevent, suppress, and punish trafficking in persons, especially women and children. The trafficking protocol has a link with transnational organised crime rather than migration. Over a hundred and fifty countries nationwide have enacted their criminal and panel code trafficking legislation from the UN trafficking protocol. Sex trafficking is the most common type of exploitation of women and children. Other forms of this crime involve exploiting vulnerable victims through forced labour, child involvement in warfare, domestic servitude, debt bondage, and organ removal for transplantation. Trafficking of women and children into sexual exploitation represents the highest form of human trafficking than other types of exploitation. Trafficking of women and children can either happen internally or across the border. It affects all kinds of people, regardless of their race, social class, culture, religion, and education levels. However, it is more of a gender-based issue against females. Furthermore, human trafficking can lead to life-threatening infections, mental disorders, lifetime trauma, and even the victim's death. The study's significance is to explore why the root causes of women and children trafficking in Nigeria are based around poverty, entrusting children in the hands of relatives and friends, corruption, globalization, weak legislation, and ignorance. The importance of this study is to establish how the national, regional, and international organisations are using the 3P’s Protection, Prevention, and Prosecution) to tackle human trafficking. The methodology approach for this study will be a qualitative paradigm. The rationale behind this selection is that the qualitative method will identify the phenomenon and interpret the findings comprehensively. The data collection will take the form of semi-structured in-depth interviews through telephone and email. The researcher will use a descriptive thematic analysis to analyse the data by using complete coding. In summary, this study aims to recommend to the Nigerian federal government to include human trafficking as a subject in their educational curriculum for early intervention to prevent children from been coerced by criminal gangs. And the research aims to find the root causes of women and children trafficking. Also, to look into the effectiveness of the strategies in place to eradicate human trafficking globally. In the same vein, the research objective is to investigate how the anti-trafficking bodies such as law enforcement and NGOs collaborate to tackle the upsurge in human trafficking.Keywords: children, Nigeria, trafficking, women
Procedia PDF Downloads 183256 Estimation of Rock Strength from Diamond Drilling
Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi
Abstract:
The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength
Procedia PDF Downloads 137255 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst
Authors: Totsaporn Suwannaruang, Kitirote Wantala
Abstract:
The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation
Procedia PDF Downloads 158254 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater
Authors: Emmanuel C. Ngerem
Abstract:
The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization
Procedia PDF Downloads 43253 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy
Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather
Abstract:
Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging
Procedia PDF Downloads 250252 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco
Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi
Abstract:
In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco
Procedia PDF Downloads 464251 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 332250 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 485249 Developing Effective Strategies to Reduce Hiv, Aids and Sexually Transmitted Infections, Nakuru, Kenya
Authors: Brian Bacia, Esther Githaiga, Teresia Kabucho, Paul Moses Ndegwa, Lucy Gichohi
Abstract:
Purpose: The aim of the study is to ensure an appropriate mix of evidence-based prevention strategies geared towards the reduction of new HIV infections and the incidence of Sexually transmitted Illnesses Background: In Nakuru County, more than 90% of all HIV-infected patients are adults and on a single-dose medication-one pill that contains a combination of several different HIV drugs. Nakuru town has been identified as the hardest hit by HIV/Aids in the County according to the latest statistics from the County Aids and STI group, with a prevalence rate of 5.7 percent attributed to the high population and an active urban center. Method: 2 key studies were carried out to provide evidence for the effectiveness of antiretroviral therapy (ART) when used optimally on preventing sexual transmission of HIV. Discussions based on an examination, assessments of successes in planning, program implementation, and ultimate impact of prevention and treatment were undertaken involving health managers, health workers, community health workers, and people living with HIV/AIDS between February -August 2021. Questionnaires were carried out by a trained duo on ethical procedures at 15 HIV treatment clinics targeting patients on ARVs and caregivers on ARV prevention and treatment of pediatric HIV infection. Findings: Levels of AIDS awareness are extremely high. Advances in HIV treatment have led to an enhanced understanding of the virus, improved care of patients, and control of the spread of drug-resistant HIV. There has been a tremendous increase in the number of people living with HIV having access to life-long antiretroviral drugs (ARV), mostly on generic medicines. Healthcare facilities providing treatment are stressed challenging the administration of the drugs, which require a clinical setting. Women find it difficult to take a daily pill which reduces the effectiveness of the medicine. ART adherence can be strengthened largely through the use of innovative digital technology. The case management approach is useful in resource-limited settings. The county has made tremendous progress in mother-to-child transmission reduction through enhanced early antenatal care (ANC) attendance and mapping of pregnant women Recommendations: Treatment reduces the risk of transmission to the child during pregnancy, labor, and delivery. Promote research of medicines through patients and community engagement. Reduce the risk of transmission through breastfeeding. Enhance testing strategies and strengthen health systems for sustainable HIV service delivery. Need exists for improved antenatal care and delivery by skilled birth attendants. Develop a comprehensive maternal reproductive health policy covering equitability, efficient and effective delivery of services. Put in place referral systems.Keywords: evidence-based prevention strategies, service delivery, human management, integrated approach
Procedia PDF Downloads 89248 Modeling Taxane-Induced Peripheral Neuropathy Ex Vivo Using Patient-Derived Neurons
Authors: G. Cunningham, E. Cantor, X. Wu, F. Shen, G. Jiang, S. Philips, C. Bales, Y. Xiao, T. R. Cummins, J. C. Fehrenbacher, B. P. Schneider
Abstract:
Background: Taxane-induced peripheral neuropathy (TIPN) is the most devastating survivorship issue for patients receiving therapy. Dose reductions due to TIPN in the curative setting lead to inferior outcomes for African American patients, as prior research has shown that this group is more susceptible to developing severe neuropathy. The mechanistic underpinnings of TIPN, however, have not been entirely elucidated. While it would be appealing to use primary tissue to study the development of TIPN, procuring nerves from patients is not realistically feasible, as nerve biopsies are painful and may result in permanent damage. Therefore, our laboratory has investigated paclitaxel-induced neuronal morphological and molecular changes using an ex vivo model of human-induced pluripotent stem cell (iPSC)-derived neurons. Methods: iPSCs are undifferentiated and endlessly dividing cells that can be generated from a patient’s somatic cells, such as peripheral blood mononuclear cells (PBMCs). We successfully reprogrammed PBMCs into iPSCs using the Erythroid Progenitor Reprograming Kit (STEMCell Technologiesᵀᴹ); pluripotency was verified by flow cytometry analysis. iPSCs were then induced into neurons using a differentiation protocol that bypasses the neural progenitor stage and uses selected small-molecule modulators of key signaling pathways (SMAD, Notch, FGFR1 inhibition, and Wnt activation). Results: Flow cytometry analysis revealed expression of core pluripotency transcription factors Nanog, Oct3/4 and Sox2 in iPSCs overlaps with commercially purchased pluripotent cell line UCSD064i-20-2. Trilineage differentiation of iPSCs was confirmed with immunofluorescent imaging with germ-layer-specific markers; Sox17 and ExoA2 for ectoderm, Nestin, and Pax6 for mesoderm, and Ncam and Brachyury for endoderm. Sensory neuron markers, β-III tubulin, and Peripherin were applied to stain the cells for the maturity of iPSC-derived neurons. Patch-clamp electrophysiology and calcitonin gene-related peptide (CGRP) release data supported the functionality of the induced neurons and provided insight into the timing for which downstream assays could be performed (week 4 post-induction). We have also performed a cell viability assay and fluorescence-activated cell sorting (FACS) using four cell-surface markers (CD184, CD44, CD15, and CD24) to select a neuronal population. At least 70% of the cells were viable in the isolated neuron population. Conclusion: We have found that these iPSC-derived neurons recapitulate mature neuronal phenotypes and demonstrate functionality. Thus, this represents a patient-derived ex vivo neuronal model to investigate the molecular mechanisms of clinical TIPN.Keywords: chemotherapy, iPSC-derived neurons, peripheral neuropathy, taxane, paclitaxel
Procedia PDF Downloads 122247 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 136246 Multicomponent Positive Psychology Intervention for Health Promotion of Retirees: A Feasibility Study
Authors: Helen Durgante, Mariana F. Sparremberger, Flavia C. Bernardes, Debora D. DellAglio
Abstract:
Health promotion programmes for retirees, based on Positive Psychology perspectives for the development of strengths and virtues, demand broadened empirical investigation in Brazil. In the case of evidence-based applied research, it is suggested feasibility studies are conducted prior to efficacy trials of the intervention, in order to identify and rectify possible faults in the design and implementation of the intervention. The aim of this study was to evaluate the feasibility of a multicomponent Positive Psychology programme for health promotion of retirees, based on Cognitive Behavioural Therapy and Positive Psychology perspectives. The programme structure included six weekly group sessions (two hours each) encompassing strengths such as Values and self-care, Optimism, Empathy, Gratitude, Forgiveness, and Meaning of life and work. The feasibility criteria evaluated were: Demand, Acceptability, Satisfaction with the programme and with the moderator, Comprehension/Generalization of contents, Evaluation of the moderator (Social Skills and Integrity/Fidelity), Adherence, and programme implementation. Overall, 11 retirees (F=11), age range 54-75, from the metropolitan region of Porto Alegre-RS-Brazil took part in the study. The instruments used were: Qualitative Admission Questionnaire; Moderator Field Diary; the Programme Evaluation Form to assess participants satisfaction with the programme and with the moderator (a six-item 4-point likert scale), and Comprehension/Generalization of contents (a three-item 4-point likert scale); Observers’ Evaluation Form to assess the moderator Social Skills (a five-item 4-point likert scale), Integrity/Fidelity (a 10 item 4-point likert scale), and Adherence (a nine-item 5-point likert scale). Qualitative data were analyzed using content analysis. Descriptive statistics as well as Intraclass Correlations coefficients were used for quantitative data and inter-rater reliability analysis. The results revealed high demand (N = 55 interested people) and acceptability (n = 10 concluded the programme with overall 88.3% frequency rate), satisfaction with the program and with the moderator (X = 3.76, SD = .34), and participants self-report of Comprehension/Generalization of contents provided in the programme (X = 2.82, SD = .51). In terms of the moderator Social Skills (X = 3.93; SD = .40; ICC = .752 [IC = .429-.919]), Integrity/Fidelity (X = 3.93; SD = .31; ICC = .936 [IC = .854-.981]), and participants Adherence (X = 4.90; SD = .29; ICC = .906 [IC = .783-.969]), evaluated by two independent observers present in each session of the programme, descriptive and Intraclass Correlation results were considered adequate. Structural changes were introduced in the intervention design and implementation methods, as well as the removal of items from questionnaires and evaluation forms. The obtained results were satisfactory, allowing changes to be made for further efficacy trials of the programme. Results are discussed taking cultural and contextual demands in Brazil into account.Keywords: feasibility study, health promotion, positive psychology intervention, programme evaluation, retirees
Procedia PDF Downloads 196245 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region
Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.Keywords: airport, hydrodynamics, safe grade elevation, tides
Procedia PDF Downloads 262244 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado
Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha
Abstract:
The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.Keywords: low-order streams, metabolism, net primary production, trophic state
Procedia PDF Downloads 258243 Isolation and Transplantation of Hepatocytes in an Experimental Model
Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia
Abstract:
Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1
Procedia PDF Downloads 317242 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites
Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari
Abstract:
Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm:241 Examining the Effects of National Disaster on the Performance of Hospitality Industry in Korea
Authors: Kim Sang Hyuck, Y. Park Sung
Abstract:
The outbreak of national disasters stimulates the decrease of the both internal and domestic tourism demands, causing bad effects on the hospitality industry. The effective and efficient risk management regarding national disasters are being increasingly required from the hospitality industry practitioners and the tourism policymakers. To establish the effective and efficient risk management strategy on national disasters, the most essential prerequisite condition is the correct estimation of national disasters’ effects in terms of the size and duration of the damages occurred from national disaster on hospitality industry. More specifically, the national disasters are twofold: natural disaster and social disaster. In addition, the hospitality industry has consisted of several types of business, such as hotel, restaurant, travel agency, etc. As reasons of the above, it is important to consider how each type of national disasters differently influences on the performance of each type of hospitality industry. Therefore, the purpose of this study is examining the effects of national disaster on hospitality industry in Korea based on the types of national disasters as well as the types of hospitality business. The monthly data was collected from Jan. 2000 to Dec. 2016. The indexes of industrial production for each hospitality industry in Korea were used with the proxy variable for the performance of each hospitality industry. Two national disaster variables (natural disaster and social disaster) were treated as dummy variables. In addition, the exchange rate, industrial production index, and consumer price index were used as control variables in the research model. The impulse response analysis was used to examine the size and duration of the damages occurred from each type of national disaster on each type of hospitality industries. The results of this study show that the natural disaster and the social disaster differently influenced on each type of hospitality industry. More specifically, the performance of airline industry is negatively influenced by the natural disaster at the time of 3 months later from the incidence. However, the negative impacts of social disaster on airline industry occurred not significantly over the time periods. For the hotel industry, both natural disaster and social disaster negatively influence the performance of hotel industry at the time of 5 months and 6 months later, respectively. Also, the negative impact of natural disaster on the performance of restaurant industry occurred at the time of 5 months later, as well as for both 3 months and 6 months later for the social disaster. Finally, both natural disaster and social disaster negatively influence the performance of travel agency at the time of 3 months and 4 months later, respectively. In conclusion, the types of national disasters differently influence the performance of each type of hospitality industry in Korea. These results would provide an important information to establish the effective and efficient risk management strategy for the national disasters.Keywords: impulse response analysis, Korea, national disaster, performance of hospitality industry
Procedia PDF Downloads 184240 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 338239 Biotechnology Approach: A Tool of Enhancement of Sticky Mucilage of Pulicaria Incisa (Medicinal Plant) for Wounds Treatment
Authors: Djamila Chabane, Asma Rouane, Karim Arab
Abstract:
Depending of the chemical substances responsible for the pharmacological effects, a future therapeutic drug might be produced by extraction from whole plants or by callus initiated from some parts. The optimized callus culture protocols now offer the possibility to use cell culture techniques for vegetative propagation and open minds for further studies on secondary metabolites and drug establishment. In Algerian traditional medicine, Pulicaria incisa (Asteraceae) is used in the treatment of daily troubles (stomachache, headhache., cold, sore throat and rheumatic arthralgia). Field findings revealed that many healers use some fresh parts (leaves, flowers) of this plant to treat skin wounds. This study aims to evaluate the healing efficiency of artisanal cream prepared from sticky mucilage isolated from calluses on dermal wounds of animal models. Callus cultures were initiated from reproductive explants (young inflorescences) excised from adult plants and transferred to a MS basal medium supplemented with growth regulators and maintained under dark for for months. Many calluses types were obtained with various color and aspect (friable, compact). Several subcultures of calli were performed to enhance the mucilage accumulation. After extraction, the mucilage extracts were tested on animal models as follows. The wound healing potential was studied by causing dermal wounds (1 cm diameter) at the dorsolumbar part of Rattus norvegicus; different samples of the cream were applied after hair removal on three rats each, including two controls (one treated by Vaseline and one without any treatment), two experimental groups (experimental group 1, treated with a reference ointment "Madecassol® and experimental group 2 treated by callus mucilage cream for a period of seventeen days. The evolution of the healing activity was estimated by calculating the percentage reduction of the area wounds treated by all compounds tested compared to the controls by using AutoCAD software. The percentage of healing effect of the cream prepared from callus mucilage was (99.79%) compared to that of Madecassol® (99.76%). For the treatment time, the significant healing activity was observed after 17 days compared to that of the reference pharmaceutical products without any wound infection. The healing effect of Madecassol® is more effective because it stimulates and regulates the production of collagen, a fibrous matrix essential for wound healing. Mucilage extracts also showed a high capacity to heal the skin without any infection. According to this pharmacological activity, we suggest to use calluses produced by in vitro culture to producing new compounds for the skin care and treatment.Keywords: calluses, Pulicaria incisa, mucilage, Wounds
Procedia PDF Downloads 130238 Auto Surgical-Emissive Hand
Authors: Abhit Kumar
Abstract:
The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.Keywords: active robots, algorithm, emission, icy steam, TIC, laser
Procedia PDF Downloads 358237 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 372236 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 177