Search results for: Chlorococcum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Chlorococcum

2 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater

Authors: Emmanuel C. Ngerem

Abstract:

The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.

Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization

Procedia PDF Downloads 0
1 Biodeterioration of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

This study investigates the algal genera responsible for biodeterioration, biodegradation, and biological pollution in two historic parks in Milton Keynes, UK: Campbell Park and Great Linford Manor Park. Various sites within these parks were selected to evaluate the morphological, aesthetic, and physical effects of algal growth on park structures and natural features. Specimens and swabs were mechanically collected from the selected sites. Algal specimens were preserved in Lugol’s solution and labelled with standard information for subsequent analysis. Using photomicrography and taxonomic keys, researchers identified algal species from aerial, terrestrial, and aquatic habitats. This comprehensive analysis revealed a diverse range of algae, both homogeneously and non-homogeneously mixed across different environments. The qualitative study identified seven classes of algae. Chlorophyceae, the predominant class, was represented by eleven genera: Chlorella, Chlorococcum, Cladophora, Coenochloris, Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix, and Zygnema. Charophyceae included four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae had two genera: Tribonema and Vaucheria. Bacillariophyceae (diatoms) included six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria. Dinophyceae had one Dinoflagellate genus. Rhodophyceae included Bangia and Batrachospermum. Cyanophyceae comprised five genera: Chroococcus, Gloeocapsa, Scytonema, Stigonema, and Oscillatoria. Quantitative analysis revealed that Chlorophyceae was the predominant class across the two parks. Coenochloris, a member of Chlorophyceae, was isolated from thirteen sites, while Gloeocapsa from Cyanophyceae was found at twelve sites. These algae impart various shades of green to the surfaces they colonise, forming biofilms that affect the aesthetic and physical integrity of the structures. Certain algae were park-specific. Prasiola, Vaucheria, and Trentepholia were isolated exclusively from Great Linford Park, with Trentepholia imparting a distinctive orange colour to walls and trees due to the pigments chlorophyll, β-carotene, and quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria, and two unidentified genera were exclusive to Campbell Park. The study found the highest number of algal genera (25) in Campbell Park's canal, followed by 21 in the canal at Great Linford Manor Park. Algae were also found on walls, wooden fences, metal sculptures, and railings, causing surface erosion, natural weathering, and cracking. These physical changes lead to technical and mechanical instability, resulting in significant damage to building materials. Algal biofilms secrete organic acids that contribute to the biosolubilisation and biodeterioration of these materials. Additionally, aquatic algal blooms identified during the study release toxins that pose health risks, including allergies, skin rashes, vomiting, diarrhoea, fever, muscle spasms, and respiratory infections. This study highlights specific areas within these historic sites that need attention and provides valuable insights into conservation strategies to mitigate the negative impacts of algal biocolonisation. Recommendations include regular monitoring and preventive measures through various treatments to preserve the integrity of these historic parks.

Keywords: biodeterioration, historic parks, algae, UK

Procedia PDF Downloads 7