Search results for: viral polymerase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 636

Search results for: viral polymerase

216 Dissection of Genomic Loci for Yellow Vein Mosaic Virus Resistance in Okra (Abelmoschus esculentas)

Authors: Rakesh Kumar Meena, Tanushree Chatterjee

Abstract:

Okra (Abelmoschus esculentas L. Moench) or lady’s finger is an important vegetable crop belonging to the Malvaceae family. Unfortunately, production and productivity of Okra are majorly affected by Yellow Vein mosaic virus (YVMV). The AO: 189 (resistant parent) X AO: 191(susceptible parent) used for the development of mapping population. The mapping population has 143 individuals (F₂:F₃). Population was characterized by physiological and pathological observations. Screening of 360 DNA markers was performed to survey for parental polymorphism between the contrasting parents’, i.e., AO: 189 and AO: 191. Out of 360; 84 polymorphic markers were used for genotyping of the mapping population. Total markers were distributed into four linkage groups (LG1, LG2, LG3, and LG4). LG3 covered the longest span (106.8cM) with maximum number of markers (27) while LG1 represented the smallest linkage group in terms of length (71.2cM). QTL identification using the composite interval mapping approach detected two prominent QTLs, QTL1 and QTL2 for resistance against YVMV disease. These QTLs were placed between the marker intervals of NBS-LRR72-Path02 and NBS-LRR06- NBS-LRR65 on linkage group 02 and linkage group 04 respectively. The LOD values of QTL1 and QTL2 were 5.7 and 6.8 which accounted for 19% and 27% of the total phenotypic variation, respectively. The findings of this study provide two linked markers which can be used as efficient diagnostic tools to distinguish between YVMV resistant and susceptible Okra cultivars/genotypes. Lines identified as highly resistant against YVMV infection can be used as donor lines for this trait. This will be instrumental in accelerating the trait improvement program in Okra and will substantially reduce the yield losses due to this viral disease.

Keywords: Okra, yellow vein mosaic virus, resistant, linkage map, QTLs

Procedia PDF Downloads 215
215 Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma

Authors: Lian Zeng

Abstract:

Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety.

Keywords: oncolytic virus, WNV-CD86, immunotherapy drugs, glioma, neuroblastoma

Procedia PDF Downloads 132
214 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines

Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara

Abstract:

The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.

Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells

Procedia PDF Downloads 416
213 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 849
212 Diverse Sensitivity to Ultraviolet Radiation of DNA and RNA Viruses

Authors: Nickolay Nosik, Dmitry Nosik, Marina Bochkova, Nina Kondrashina, Olga Lobach

Abstract:

The bactericidal effect of UV radiation is known for long time and widely used for inactivation of pathogens but for viruses it is not so uniform. Due to a wide variety of viruses their sensitivity to UV radiation is quite different and not quite predictable. The goal of the study was to determine the inactivation kinetics of UV radiation ( 254 nm) of the viruses of social importance (HIV), as well as test-viruses (poliovirus, adenovirus) used for the evaluation of the viral inactivation efficacy of germicides. Methods: DNA viruses- adenovirus, type 5; Herpes simplex virus (HSV), type 1, and RNA viruses–human immunodeficiency virus (HIV), type 1 and poliovirus, type 1 (Sabin strain) were obtained from State collection of viruses ( The D.I. Ivanovsky Institute of Virology). The source of UV radiation was a 15-watt low-pressure mercury vapor lamp (over 60% 254nm). The samples of 5cm2 were placed direct under the UV lamp flow (h-0.3m). Log reduction value was used as a marker for the rate of virus inactivation. Results: The data obtained indicate that poliovirus (one of the viruses most resistant to chemical germicides) and HSV are rather sensitive to UV radiation ( D90 =250-311 J/m2). Adenovirus is much more resistant to UV radiation (750 J/m2 ). The kinetics of adenovirus inactivation : 0 min- 5.0 lg TCID50, 10 min - 5,0, 15 min -4,0, 30 min – 3.5, 60 min – 1,0, 75 min -0,5 lg TCID50, 90 min –virus not detectable. HIV is most resistant to UV radiation among the studied viruses. It takes more than 4 hrs to inactivate the virus on the surface. D90 = 2000 J/m2 Conclusion: The results of the study show that there is no direct dependence between sensitivity to UV light and the size of the virion or presence\absence of the envelope of the virus. Poliovirus and adenovirus are small viruses (20-30nm poliovirus and 70-90nm adenovirus) and both are non-enveloped viruses but adenovirus 3-fold more resistant to UV radiation than poliovirus. It can be expected that viruses with more complicate structure, like Herpes virus (200nm) or HIV (80-100 nm), would be more sensitive to UV light. However, the very high resistance of HIV to UV radiation needs further investigation. The diverse resistance of the different viruses to UV radiation should be taken into the account when UV light is used to inactivate infectious viruses in hospitals and other public environments.

Keywords: HIV, HSV, inhibition of viruses, UV radiation

Procedia PDF Downloads 455
211 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa

Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh

Abstract:

Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.

Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health

Procedia PDF Downloads 149
210 Effect of CYP2B6 c.516G>T and c.983T>C Single Nucleotide Polymorphisms on Plasma Nevirapine Levels in Zimbabwean HIV/AIDS Patients

Authors: Doreen Duri, Danai Zhou, Babil Stray-Pedersen, Collet Dandara

Abstract:

Given the high prevalence of HIV/AIDS in sub-Saharan Africa, and the elusive search for a cure, understanding the pharmacogenetics of currently used drugs is critical in populations from the most affected regions. Compared to Asian and Caucasian populations, African population groups are more genetically diverse, making it difficult to extrapolate findings from one ethnic group to another. This study aimed to investigate the role of genetic variation in CYP2B6 (c.516G>T and c.983T>C) single nucleotide polymorphisms on plasma nevirapine levels among HIV-infected adult Zimbabwean patients. Using a cross-sectional study, patients on nevirapine-containing HAART, having reached steady state (more than six weeks on treatment) were recruited to participate. Blood samples were collected after patients provided consent and samples were used to extract DNA for genetic analysis or to measure plasma nevirapine levels. Genetic analysis was carried out using PCR and RFLP or Snapshot for the two single nucleotide polymorphisms; CYP2B6 c.516G>T and c.983T>C, while LC-MS/MS was used in analyzing nevirapine concentration. CYP2B6 c.516G>T and c.983T>C significantly predicted plasma nevirapine concentration with the c.516T and c.983T being associated with elevated plasma nevirapine concentrations. Comparisons of the variant allele frequencies observed in this group to those reported in some African, Caucasian and Asian populations showed significant differences. We conclude that pharmacogenetics of nevirapine can be creatively used to determine patients who are likely to develop nevirapine-associated side effects as well as too low plasma concentrations for viral suppression.

Keywords: allele frequencies, genetically diverse, nevirapine, single nucleotide polymorphism

Procedia PDF Downloads 456
209 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 89
208 Evaluation of the Ability of COVID-19 Infected Sera to Induce Netosis Using an Ex-Vivo NETosis Monitoring Tool

Authors: Constant Gillot, Pauline Michaux, Julien Favresse, Jean-Michel Dogné, Jonathan Douxfils

Abstract:

Introduction: NETosis has emerged as a crucial yet paradoxical factor in severe COVID-19 cases. While neutrophil extracellular traps (NETs) help contain and eliminate viral particles, excessive NET formation can lead to hyperinflammation, exacerbating tissue damage and acute respiratory distress syndrome (ARDS). Aims: This study evaluates the relationship between COVID-19-infected sera and NETosis using an ex-vivo model. Methods: Sera from 8 post-admission COVID-19 patients, after receiving corticoid therapy, were used to induce NETosis in neutrophils from a healthy donor. NET formation was tracked using fluorescent markers for DNA and neutrophil elastase (NE) every 2 minutes for 8 hours. The results were expressed as a percentage of DNA/NE released over time. Key metrics, including T50 (time to 50% release) and AUC (area under the curve), representing total NETosis potential), were calculated. A 27-cytokine screening kit was used to assess the cytokine composition of the sera. Results: COVID-19 sera induced NETosis based on their cytokine profile. The AUC of NE and DNA release decreased with time following corticoid therapy, showing a significant reduction in 6 of the 8 patients (p<0.05). T50 also decreased in parallel with AUC for both markers. Cytokines concentration decrease with time after therapy administration. There is correlation between 14 cytokines concentration and NE release. Conclusion: This ex-vivo model successfully demonstrated the induction of NETosis by COVID-19 sera using two markers. A clear decrease in NETosis potential was observed over time with glucocorticoid therapy. This model can be a valuable tool for monitoring NETosis and investigating potential NETosis inducers and inhibitors.

Keywords: NETosis, COVID-19, cytokine storm, biomarkers

Procedia PDF Downloads 19
207 Associations Between Psychological Distress and COVID-19 Disease Course: A Retrospective Cohort Study of 3084 Cases in Belgium

Authors: Gwendy Darras, Mattias Desmet

Abstract:

Previous research showed that psychological distress has a negative impact on the disease course of viral infections. For COVID-19, the same association was observed in small samples of specific segments of the population (e.g. health care workers). The present study presents a more refined analysis of this association, measuring a broader spectrum of psychological distress in a large sample (n=3084) of the general Flemish population. Several types of psychological distress (state, trait and health anxiety, depression, intra-, and interpersonal stress) are registered throughout three periods: one year before the contamination, one week before the contamination, and during the contamination. In doing so, validated scales such as DASS-21, IIP-32, and FCV-19S are used. Furthermore, the course of COVID-19 is registered in several ways: number of symptoms, number of days sick leave due to COVID-19, and number of days the symptoms have lasted. Also, different control variables such as vaccination status, medical and psychological history are taken into account. Statistical analysis shows that all types of psychological distress are positively correlated with the severity of the COVID-19 disease course. Anxiety during the contamination shows the strongest correlation, but psychological distress one year before the onset of COVID-19 was still significantly associated with the worsening of the disease course. As the assessment of the latter type of distress happened before the onset of the COVID-19 disease course, retrospective bias resulting in artificial associations between self-reported stress and COVID-19 severity is unlikely to have impacted the observations. In view of possible future pandemics, it is important to focus on general stress and anxiety reduction in the general population as soon as possible. It is also advisable to minimize the use of stress-inducing messages to encourage the population to adhere to the measures issued during a pandemic.

Keywords: anxiety, COVID-19, depression, psychoneuroimmunology, psychological distress, stress

Procedia PDF Downloads 83
206 Ebola Virus Glycoprotein Inhibitors from Natural Compounds: Computer-Aided Drug Design

Authors: Driss Cherqaoui, Nouhaila Ait Lahcen, Ismail Hdoufane, Mehdi Oubahmane, Wissal Liman, Christelle Delaite, Mohammed M. Alanazi

Abstract:

The Ebola virus is a highly contagious and deadly pathogen that causes Ebola virus disease. The Ebola virus glycoprotein (EBOV-GP) is a key factor in viral entry into host cells, making it a critical target for therapeutic intervention. Using a combination of computational approaches, this study focuses on the identification of natural compounds that could serve as potent inhibitors of EBOV-GP. The 3D structure of EBOV-GP was selected, with missing residues modeled, and this structure was minimized and equilibrated. Two large natural compound databases, COCONUT and NPASS, were chosen and filtered based on toxicity risks and Lipinski’s Rule of Five to ensure drug-likeness. Following this, a pharmacophore model, built from 22 reported active inhibitors, was employed to refine the selection of compounds with a focus on structural relevance to known Ebola inhibitors. The filtered compounds were subjected to virtual screening via molecular docking, which identified ten promising candidates (five from each database) with strong binding affinities to EBOV-GP. These compounds were then validated through molecular dynamics simulations to evaluate their binding stability and interactions with the target. The top three compounds from each database were further analyzed using ADMET profiling, confirming their favorable pharmacokinetic properties, stability, and safety. These results suggest that the selected compounds have the potential to inhibit EBOV-GP, offering new avenues for antiviral drug development against the Ebola virus.

Keywords: EBOV-GP, Ebola virus glycoprotein, high-throughput drug screening, molecular docking, molecular dynamics, natural compounds, pharmacophore modeling, virtual screening

Procedia PDF Downloads 22
205 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 302
204 Photoelectrical Stimulation for Cancer Therapy

Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın

Abstract:

Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.

Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels

Procedia PDF Downloads 177
203 Poliovirus Vaccine Immunity among Chronically Malnourished Pakistani Infants: A Randomized Controlled Trial from Developing Country

Authors: Ali Faisal Saleem, Farheen Quadri, Mach Ondrej, Anita Zaidi

Abstract:

Purpose: Pakistan is the final frontier for a polio-free world. Chronic malnutrition is associated with lack of effective gut immunity, and possibly associated with poliomyelitis in children received multiple OPV. We evaluate IPV dose administered together with OPV results in higher immunogenicity and mucosal immunity compared to OPV alone in chronically malnourished infants. Methods AND Materials: A community-based, unblinded-randomized-trial, conducted in 5 peri-urban, low-middle-income households of Karachi, in infants 9-12 months. Two study groups were non-malnourished (HAZ= -2 or more) and chronic malnourished (HAZ <-2SD), with 2-arms each i) OPV and ii) OPV and IPV. Two blood specimens (2ml) at baseline and at day 28 and two stool specimens (6 gm.) at day 29 and after 7 days. All infants received a bOPV challenge dose after first stool specimen. Calculates sample size was 210 in each arm. Serological (baseline compared to 28 days post-vaccine) and mucosal immunity after one week of bOPV challenge dose were study outcomes. Results: Baseline seroprevalence in malnourished infants were low compared to non-malnourished (P1, P2 and P3 (p=<0.001). There is significant rise in antibody titer and P1 seroprevalence in Mal A and B after receiving study vaccine; much higher in Mal B. Infants randomized to bOPV + IPV study vaccine showed incremental immune response against P1 (Mal B, 92.2%; Nor B, 98.4%), P2 (Mal B, 90.4%; Nor B, 94.7%), and P3 (Mal B, 85.6% and Nor B, 93.5%) was observed. A significant proportion of infants in malnourished (P1, 13%; P2, 24%; P3, 26%) and normally nourished group (P1, 5%; P2, 11%; P3, 14%) were found to be seronegative at baseline. Infants who received BOPV + IPV as their study vaccine showed a very high seroconversion response after vaccine (p=<0.001 for P1, P2 and P3). Majority of the specimens were negative at baseline (Mal A, 2%, Mal B, 1%; Nor A, 2%; Nor B, 1%), and remains negative after bOPV challenge dose (Mal A, 8%, Mal B, 6%; Nor A, 11%; Nor B, 10%). Conclusion: Malnourished-infants have low poliovirus-seroprevalence that increased remarkably after IPV. There is less viral shedding after IPV in infants.

Keywords: chronic malnutrition, infants, IPV, OPV

Procedia PDF Downloads 398
202 Genotypic and Allelic Distribution of Polymorphic Variants of Gene SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) and Their Association to the Clinical Response to Metformin in Adult Pakistani T2DM Patients

Authors: Sadaf Moeez, Madiha Khalid, Zoya Khalid, Sania Shaheen, Sumbul Khalid

Abstract:

Background: Inter-individual variation in response to metformin, which has been considered as a first line therapy for T2DM treatment is considerable. In the current study, it was aimed to investigate the impact of two genetic variants Leu125Phe (rs77474263) and Gly64Asp (rs77630697) in gene SLC47A1 on the clinical efficacy of metformin in T2DM Pakistani patients. Methods: The study included 800 T2DM patients (400 metformin responders and 400 metformin non-responders) along with 400 ethnically matched healthy individuals. The genotypes were determined by allele-specific polymerase chain reaction. In-silico analysis was done to confirm the effect of the two SNPs on the structure of genes. Association was statistically determined using SPSS software. Results: Minor allele frequency for rs77474263 and rs77630697 was 0.13 and 0.12. For SLC47A1 rs77474263 the homozygotes of one mutant allele ‘T’ (CT) of rs77474263 variant were fewer in metformin responders than metformin non-responders (29.2% vs. 35.5 %). Likewise, the efficacy was further reduced (7.2% vs. 4.0 %) in homozygotes of two copies of ‘T’ allele (TT). Remarkably, T2DM cases with two copies of allele ‘C’ (CC) had 2.11 times more probability to respond towards metformin monotherapy. For SLC47A1 rs77630697 the homozygotes of one mutant allele ‘A’ (GA) of rs77630697 variant were fewer in metformin responders than metformin non-responders (33.5% vs. 43.0 %). Likewise, the efficacy was further reduced (8.5% vs. 4.5%) in homozygotes of two copies of ‘A’ allele (AA). Remarkably, T2DM cases with two copies of allele ‘G’ (GG) had 2.41 times more probability to respond towards metformin monotherapy. In-silico analysis revealed that these two variants affect the structure and stability of their corresponding proteins. Conclusion: The present data suggest that SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) polymorphisms were associated with the therapeutic response of metformin in T2DM patients of Pakistan.

Keywords: diabetes, T2DM, SLC47A1, Pakistan, polymorphism

Procedia PDF Downloads 159
201 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water

Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai

Abstract:

Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.

Keywords: disease, EHP, inland saline water, shrimp culture

Procedia PDF Downloads 262
200 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 190
199 Social Media: The Major Trigger of Online and Offline Political Activism

Authors: Chan Eang Teng, Tang Mui Joo

Abstract:

With the viral factor on social media, the sense of persuasion is generated by repetition and popularity. When users’ interest is captured, political awareness increases to spark political enthusiasm, but, the level of user’s political participation and political attitude of those active users is still questionable. An online survey on 250 youth and in-depth interview on two politicians are conducted to answer the main question in this paper. The result shows that Facebook significantly increases political awareness among youths. Social media may not be the major trigger to political activism among youths as most respondents opined that they would still vote without Facebook. Other factors could be political campaigning, political climate, age, peer pressure or others. Finding also shows that majority of respondents did not participate in online political debates or political groups. Many also wondered if the social media was the main power switch that triggers the political influx among young voters. The research finding is significant to understand how the new media, Facebook, has reshaped the political landscape in Malaysia, creating the Social Media Election that changed the rules of the political game. However, research finding does not support the ideal notion that the social media is the major trigger to youth’s political activism. This research outcome has exposed the flaws of the Social Media Election. It has revealed the less optimistic side of youth political activism. Unfortunately, results fall short of the idealistic belief that the social media have given rise to political activism among youths in the 13th General Election in Malaysia. The research outcome also highlights an important lesson for the democratic discourse of Malaysia which is making informed and educated decisions takes more commitment, proactive and objective attitude.

Keywords: social media, political participation, political activism, democracy, political communication

Procedia PDF Downloads 323
198 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 194
197 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling

Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li

Abstract:

Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.

Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR

Procedia PDF Downloads 218
196 An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application

Authors: Rolivhuwa Bishop Ramagoma1*, Lynn Cairncross1, , Saartjie Roux1

Abstract:

According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far.

Keywords: nanotechnology, cancer, diagnosis, therapeutics, gold nanoparticles.

Procedia PDF Downloads 94
195 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 406
194 Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants

Authors: Mina Kalantarzadeh, Claire Lockie-Williams, Caroline Howard

Abstract:

DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants.

Keywords: degradation, DNA extraction, nucleic acid reference material, trnH-psbA

Procedia PDF Downloads 199
193 Enteropathogenic Viruses Associated with Acute Gastroenteritis among Under 5-Years Children in Africa: A Systematic Review and Meta-Analysis

Authors: Cornelius Arome Omatola, Ropo Ebenezer Ogunsakin, Anyebe Bernard Onoja, Martin-Luther Oseni Okolo, Joseph Abraham-Oyiguh, Kehinde Charles Mofolorunso, Phoebe Queen Akoh, Omebije Patience Adejo, Joshua Idakwo, Therisa Ojomideju Okeme, Danjuma Muhammed, David Moses Adaji, Sunday Ocholi Samson, Ruth Aminu, Monday Eneojo Akor

Abstract:

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0% (95% CI 24.0–39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0% (95% CI 12.0–20.0), 10% (95% CI 6-15), 4.0% (95% CI 2.0–6.0), 4% (95% CI 3-6), and 2.3% (95% CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (38%), followed by G3P[8] (11.7%), G9P[8] (8.7%), and G2P[4] (7.1%); although, unusual genotypes were also observed, including G3P[6] (2.7%), G8P[6] (1.7%), G1P[6] (1.5%), G10P[8] (0.9%), G8P[4] (0.5%), and G4P[8] (0.4%). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6%, 613/725 vs 14.9%, 108/725), with the GII.4 (79.3%) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.

Keywords: enteric viruses, rotavirus, norovirus, adenovirus, astrovirus, gastroenteritis

Procedia PDF Downloads 95
192 Metagenomic Analysis and Pharmacokinetics of Phage Therapy in the Treatment of Bovine Subclinical Mastitis

Authors: Vaibhav D. Bhatt, Anju P. Kunjadia, D. S. Nauriyal, Bhumika J. Joshi, Chaitanya G. Joshi

Abstract:

Metagenomic analysis of milk samples collected from local cattle breed, kankrej (Bos indicus), Gir (Bos indicus) and Crossbred (Bos indicus X Bos taurus) cattle harbouring subclinical mastitis was carried out by next-generation sequencing (NGS) 454 GS-FLX technology. Around 56 different species including members of Enterobacteriales, Pseudomonadales, Bacillales and Lactobacillales with varying abundance were detected in infected milk. The interesting presence of bacteriophages against Staphylococcus aureus, Escherichia coli, Enterobacter and Yersinia species were observed, especially Enterobacteria and E. coli phages (0∙32%) in Kankrej, Enterobacteria and Staphylococcus phages (1∙05%) in Gir and Staphylococcus phages (2∙32%) in crossbred cattle. NGS findings suggest that phages may be involved in imparting natural resistance of the cattle against pathogens. Further infected milk samples were subjected for bacterial isolation. Fourteen different isolates were identified, and DNA was extracted. Genes (Tet-K, Msr-A, and Mec-A) providing antibiotic resistance to the bacteria were screened by Polymerase Chain Reaction and results were validated with traditional antibiotic assay. Total 3 bacteriophages were isolated from nearby environment of the cattle farm. The efficacy of phages was checked against multi-drug resistant bacteria, identified by PCR. In-vivo study was carried out for phage therapy in mammary glands of female rats “Wister albino”. Mammary glands were infused with MDR isolates for 3 consecutive days. Recovery was observed in infected rats after intramammary infusion of sterile phage suspension. From day 4th onwards, level of C-reactive protein was significant increases up to day 12th . However, significant reduction was observed between days 12th to 18th post treatment. Bacteriophages have significant potential as antibacterial agents and their ability to replicate exponentially within their hosts and their specificity, make them ideal candidates for more sustainable mastitis control.

Keywords: bacteriophages, c-reactive protein, mastitis, metagenomic analysis

Procedia PDF Downloads 315
191 Post-Pandemic Public Space, Case Study of Public Parks in Kerala

Authors: Nirupama Sam

Abstract:

COVID-19, the greatest pandemic since the turn of the century, presents several issues for urban planners, the most significant of which is determining appropriate mitigation techniques for creating pandemic-friendly and resilient public spaces. The study is conducted in four stages. The first stage consisted of literature reviews to examine the evolution and transformation of public spaces during pandemics throughout history and the role of public spaces during pandemic outbreaks. The second stage is to determine the factors that influence the success of public spaces, which was accomplished by an analysis of current literature and case studies. The influencing factors are categorized under comfort and images, uses and activity, access and linkages, and sociability. The third stage is to establish the priority of identified factors for which a questionnaire survey of stakeholders is conducted and analyzing of certain factors with the help of GIS tools. COVID-19 has been in effect in India for the last two years. Kerala has the highest daily COVID-19 prevalence due to its high population density, making it more susceptible to viral outbreaks. Despite all preventive measures taken against COVID-19, Kerala remains the worst-affected state in the country. Finally, two live case studies of the hardest-hit localities, namely Subhash bose park and Napier Museum park in the Ernakulam and Trivandrum districts of Kerala, respectively, were chosen as study areas for the survey. The responses to the questionnaire were analyzed using SPSS for determining the weights of the influencing factors. The spatial success of the selected case studies was examined using the GIS interpolation model. Following the overall assessment, the fourth stage is to develop strategies and guidelines for planning public spaces to make them more efficient and robust, which further leads to improved quality, safety and resilience to future pandemics.

Keywords: urban design, public space, covid-19, post-pandemic, public spaces

Procedia PDF Downloads 137
190 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 149
189 Association between a Serotonin Re-Uptake Transporter Gene Polymorphism and Mucosal Serotonin Level in Women Patients with Irritable Bowel Syndrome and Healthy Control: A Pilot Study from Northern India

Authors: Sunil Kumar, Uday C. Ghoshal

Abstract:

Background and aims: Serotonin (5-hydroxtryptamine, 5-HT) is an important factor in gut function, playing key roles in intestinal peristalsis and secretion, and in sensory signaling in the brain-gut axis. Removal from its sites of action is mediated by a specific protein called the serotonin reuptake transporter (SERT). Polymorphisms in the promoter region of the SERT gene have effects on transcriptional activity, resulting in altered 5-HT reuptake efficiency. Functional polymorphisms may underlie disturbance in gut function in individuals suffering with disorders such as irritable bowel syndrome (IBS). The aim of this study was to assess the potential association between SERT polymorphisms and the diarrhea predominant IBS (D-IBS) phenotype Subjects: A total of 36 northern Indian female patients and 55 female northern Indian healthy controls (HC) were subjected to genotyping. Methods: Leucocyte DNA of all subjects was analyzed by polymerase chain reaction based technologies for SERT polymorphisms, specifically the insertion/deletion polymorphism in the promoter (SERT-P). Statistical analysis was performed to assess association of SERT polymorphism allele with the D-IBS phenotype. Results: The frequency of distribution of SERT-P gene was comparable between female patients with IBS and HC (p = 0.086). However, frequency of SERT-P deletion/deletion genotype was significantly higher in female patients with D-IBS compared to C-IBS and A-IBS [17/19 (89.5%) vs. 4/12 (33.3%) vs. 1/5 (20%), p=0.001, respectively]. The mucosal level of serotonin was higher in D-IBS compared to C-IBS and A-IBS [Median, range (159.26, 98.78–212.1) vs. 110.4, 67.87–143.53 vs. 92.34, 78.8–166.3 pmol/mL, p=0.001, respectively]. The mucosal level of serotonin was higher in female patients with IBS with SERT-P deletion/deletion genotype compared deletion/insertion and insertion/insertion [157.65, 67.87–212.1 vs. 110.4, 78.1–143.32 vs. 100.5, 69.1–132.03 pmol/mL, p=0.001, respectively]. Patients with D-IBS with deletion/deletion genotype more often reported symptoms of abdominal pain, discomfort (p=0.025) and bloating (p=0.039). Symptoms development following lactose ingestion was strongly associated with D-IBS and SERT-P deletion/deletion genotype (p=0.004). Conclusions: Significant association was observed between D-IBS and the SERT-P deletion/deletion genotype, suggesting that the serotonin transporter is a potential candidate gene for D-IBS in women.

Keywords: serotonin, SERT, inflammatory bowel disease, genetic polymorphism

Procedia PDF Downloads 333
188 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 270
187 Association of 105A/C IL-18 Gene Single Nucleotide Polymorphism with House Dust Mite Allergy in an Atopic Filipino Population

Authors: Eisha Vienna M. Fernandez, Cristan Q. Cabanilla, Hiyasmin Lim, John Donnie A. Ramos

Abstract:

Allergy is a multifactorial disease affecting a significant proportion of the population. It is developed through the interaction of allergens and the presence of certain polymorphisms in various susceptibility genes. In this study, the correlation of the 105A/C single nucleotide polymorphism (SNP) of the IL-18 gene and house dust mite-specific IgE among Filipino allergic and non-allergic population was investigated. Atopic status was defined by serum total IgE concentration of ≥100 IU/mL, while house dust mite allergy was defined by specific IgE value ≥ +1SD of IgE of nonatopic participants. Two hundred twenty match-paired Filipino cases and controls aged 6-60 were the subjects of this investigation. The level of total IgE and Specific IgE were measured using Enzyme-Linked Immunosorbent Assay (ELISA) while Polymerase Chain Reaction – Restriction Fragment Length Polymorphism (PCR-RFLP) analysis was used in the SNP detection. Sensitization profiles of the allergic patients revealed that 97.3% were sensitized to Blomia tropicalis, 40.0% to Dermatophagoides farinae, and 29.1% to Dermatophagoides pteronyssinus. Multiple sensitization to HDMs was also observed among the 47.27% of the atopic participants. Any of the allergy classes of the atopic triad were exhibited by the cases (allergic asthma: 48.18%; allergic rhinitis: 62.73%; atopic dermatitis: 19.09%), and two or all of these atopic states are concurrently occurring in 26.36% of the cases. A greater proportion of the atopic participants with allergic asthma and allergic rhinitis were sensitized to D. farinae, and D. pteronyssinus, while more of those with atopic dermatitis were sensitized to D. pteronyssinus than D. farinae. Results show that there is overrepresentation of the allele “A” of the 105A/C IL-18 gene SNP in both cases and control groups of the population. The genotype that predominate the population is the heterozygous “AC”, followed by the homozygous wild “AA”, and the homozygous variant “CC” being the least. The study confirmed a positive association between serum specific IgE against B. tropicalis and D. pteronyssinus and the allele “C” (Bt P=0.021, Dp P=0.027) and “AC” (Bt P=0.003, Dp P=0.026) genotype. Findings also revealed that the genotypes “AA” (OR:1.217; 95% CI: 0.701-2.113) and “CC” (OR, 3.5; 95% CI: 0.727-16.849) increase the risk of developing allergy. This indicates that the 105A/C IL-18 gene SNP is a candidate genetic marker for HDM allergy among Filipino patients.

Keywords: house dust mite allergy, interleukin-18 (IL-18), single nucleotide polymorphism,

Procedia PDF Downloads 459