Search results for: targeted polymeric NPs
1196 The Design Process of an Interactive Seat for Improving Workplace Productivity
Authors: Carlos Ferreira, Paulo Freitas, Valentim Freitas
Abstract:
Creative industries’ workers are becoming more prominent as countries move towards intellectual-based economies. Consequently, the nature and essence of the workplace needs to be reconfigured so that creativity and productivity can be better promoted at these spaces. Using a multidisciplinary approach and a user-centered methodology, combining product design, electronic engineering, software and human-computer interaction, we have designed and developed a new seat that uses embedded sensors and actuators to increase the overall well-being of its users, their productivity and their creativity. Our contribution focuses on the parameters that most affect the user’s work on these kinds of spaces, which are, according to our study, noise and temperature. We describe the design process for a new interactive seat targeted at improving workspace productivity.Keywords: human-computer interaction, usability, user interface, creativity, ergonomics
Procedia PDF Downloads 2211195 The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment
Authors: Farman Ali, Asif Mahmood
Abstract:
The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care.Keywords: prostate cancer, genetic markers, personalized medicine, BRCA1 and BRCA2
Procedia PDF Downloads 621194 The Challenges and Opportunities Faced by Women in Geomatics Engineering: The Case of the SADC Region
Authors: Moreblessings Shoko
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. Also, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: women, geomatics, challenges, capacity building
Procedia PDF Downloads 5741193 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery
Authors: Fateme Nokhodchi Bonab
Abstract:
Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.Keywords: MRI, porous media, drug delivery, biomedical applications
Procedia PDF Downloads 891192 TNF-Kinoid® in Autoimmune Diseases
Authors: Yahia Massinissa, Melakhessou Med Akram, Mezahdia Mehdi, Marref Salah Eddine
Abstract:
Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system.Keywords: cytokines, Kinoid tech, auto-immune diseases, vaccination
Procedia PDF Downloads 3371191 Urban Conservation Methodology for Heritage Areas Case Study "Qabel Street, Old Jeddah"
Authors: Hossam Elborombaly, Nader Y. Azab
Abstract:
The Middle East region is rich with its architecture and urban settings. This makes it viable for exploring and applying different strategies that deal with conservation. Current context characterized by pollution, socioeconomic issues, behavioral problems, etc. affects architectural and urban heritage –literally- in all Middle Eastern countries. Although there have been numerous strategies in place to preserve and/ or rehabilitate heritage, all has been designed and implemented following political more than technical or methodical processes. This only resulted in more deterioration of the targeted areas. This paper explores different approaches in some selected Arab countries and relies on comparative analysis with some successful European experiences. The aim is to establish some solid basis for dealing with heritage areas; an approach that respects heritage and traditions without compromising sustainability or socioeconomic opportunities.Keywords: conservation, heritage, identity, urban conservation methodology,
Procedia PDF Downloads 3931190 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil
Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau
Abstract:
The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction
Procedia PDF Downloads 821189 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application
Authors: Wided Zerguine, Farid Habelhames
Abstract:
The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide
Procedia PDF Downloads 3281188 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources
Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche
Abstract:
The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil
Procedia PDF Downloads 1601187 Urban Conservation Methodology for Heritage Areas: A Case Study in Qabel Street, Old Jeddah
Authors: Hossam Hassan Elborombaly, Nader Y. Azab
Abstract:
The Middle East region is rich with its architecture and urban settings. This makes it viable for exploring and applying different strategies that deal with conservation. Current context characterized by pollution, socioeconomic issues, behavioral problems, etc. affects architectural and urban heritage –literally- in all Middle Eastern countries. Although there have been numerous strategies in place to preserve and/ or rehabilitate heritage, all has been designed and implemented following political more than technical or methodical processes. This only resulted in more deterioration of the targeted areas. This paper explores different approaches in some selected Arab countries and relies on comparative analysis with some successful European experiences. The aim is to establish some solid basis for dealing with heritage areas; an approach that respects heritage and traditions without compromising sustainability or socioeconomic opportunities.Keywords: rehabilitation, socioeconomic, urban conservation, urban strategy
Procedia PDF Downloads 5451186 Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective
Authors: Temesgen Geremew Tefery
Abstract:
Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies.Keywords: biosensing, nanomaterials, biotechnology, nanotechnology
Procedia PDF Downloads 271185 SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation
Authors: Noor Ul Afsar, Wengen Ji, Bin Wu, Muhammad A. Shehzad, Liang Ge, Tongwen Xu
Abstract:
The synthesis of monovalent cation perm-selective membranes (MCPMs) to efficiently discriminate amongst cations from seawater is of great importance for several industrial applications. However, a technical approach is highly desired to construct MCPMs to obtain a high ionic flux and sustain perm-selectivity simultaneously. In the present work, the thickness of the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) layer on the surface of the SPPO-PVA (SPVA) composite membrane was adjusted using a facile procedure to achieve high permselectivity without scarifying the ionic flux. The thickness of the selective layer was precisely controlled using various concentrations of the QPPO solution. By the introduction of the cationic layer on the SPVA membrane, the monovalent cation can be separated from the divalent cation by their difference in charge density. The influence of the selective barrier (thickness) endows MCPMs with high perm-selectivity up to 12.7 for 0.1 mol L⁻¹ Li⁺/Mg²⁺ system, which is very satisfactory for polymeric membranes. The fabricated membranes have low electrical resistance and high limiting current density (iₗᵢₘ). Keeping in view the ED results, the prepared membranes with selective surface layers could be a viable candidate for Li⁺ selective separation from divalent cation Mg²⁺.Keywords: monovalent cation perm-selective membranes, cation fractionation, perm-selectivity, ionic flux, electrodialysis
Procedia PDF Downloads 721184 Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma
Authors: Simona Perga, Chiara Beltramo, Floriana Fruscione, Isabella Martini, Federica Cavallo, Federica Riccardo, Paolo Buracco, Selina Iussich, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari, Paola Modesto
Abstract:
Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma.Keywords: animal model, canine melanoma, gene expression, spontaneous tumors, targeted RNAseq
Procedia PDF Downloads 1991183 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit
Procedia PDF Downloads 1751182 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells
Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi
Abstract:
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery
Procedia PDF Downloads 3741181 Faculty Members' Acceptance of Mobile Learning in Kingdom of Saudi Arabia: Case Study of a Saudi University
Authors: Omran Alharbi
Abstract:
It is difficult to find an aspect of our modern lives that has been untouched by mobile technology. Indeed, the use of mobile learning in Saudi Arabia may enhance students’ learning and increase overall educational standards. However, within tertiary education, the success of e-learning implementation depends on the degree to which students and educators accept mobile learning and are willing to utilise it. Therefore, this research targeted the factors that influence Hail University instructors’ intentions to use mobile learning. An online survey was completed by eighty instructors and it was found that their use of mobile learning was heavily predicted by performance experience, effort expectancy, social influence, and facilitating conditions; the multiple regression analysis revealed that 67% of the variation was accounted for by these variables. From these variables, effort expectancy was shown to be the strongest predictor of intention to use e-learning for instructors.Keywords: acceptance, faculty member, mobile learning, KSA
Procedia PDF Downloads 1531180 Formulation and in Vitro Characterization of Bioactives Loaded Polymeric Nanoparticle Incorporated into Multiphase Hydrogel System for the Treatment of Infected Burn Wound
Authors: Rajni Kant Panik, Deependra Singh, Manju Singh
Abstract:
Despite significant advances in the treatment of severe burn injury, infection and sepsis persist as frequent causes of morbidity and mortality for burn victims due to extensive compromise of the skin and contiguous tissue that serve as a protective barrier against microbial invasion. In the setting of a burn wound infection, Staphylococcus aureus is the most commonly isolated pathogens from bloodstream infections in burn care hospitals. We aimed to develop a biocompatible system of Poly vinyl alcohol (PVA)-sodium alginate hydrogel carrying multiple drugs- catalase and mupirocin in controlled manner for effective and complete burn wound healing. PLGA nanoparticles of Catalase and mupirocin were prepared by homogenization method and optimized system was incorporated in PVA-sodium alginate slurry. PVA-sodium alginate hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. The study clearly showed the beneficial effect of antioxidant enzyme and antibiotic in the treatment of infected burn wound, as evidenced by the reduced incidence of wound infection and the shortening of healing time.Keywords: burn wound, catalase, mupirocin, wound healing
Procedia PDF Downloads 5031179 Progressing Institutional Quality Assurance and Accreditation of Higher Education Programmes
Authors: Dominique Parrish
Abstract:
Globally, higher education institutions are responsible for the quality assurance and accreditation of their educational programmes (Courses). The primary purpose of these activities is to ensure that the educational standards of the governing higher education authority are met and the quality of the education provided to students is assured. Despite policies and frameworks being established in many countries, to improve the veracity and accountability of quality assurance and accreditation processes, there are reportedly still mistakes, gaps and deficiencies in these processes. An analysis of Australian universities’ quality assurance and accreditation processes noted that significant improvements were needed in managing these processes and ensuring that review recommendations were implemented. It has also been suggested that the following principles are critical for higher education quality assurance and accreditation to be effective and sustainable: academic standards and performance outcomes must be defined, attainable and monitored; those involved in providing the higher education must assume responsibility for the associated quality assurance and accreditation; potential academic risks must be identified and management solutions developed; and the expectations of the public, governments and students should be considered and incorporated into Course enhancements. This phenomenological study, which was conducted in a Faculty of Science, Medicine and Health in an Australian university, sought to systematically and iteratively develop an effective quality assurance and accreditation process that integrated the evidence-based principles of success and promoted meaningful and sustainable change. Qualitative evaluative feedback was gathered, over a period of eleven months (January - November 2014), from faculty staff engaged in the quality assurance and accreditation of forty-eight undergraduate and postgraduate Courses. Reflexive analysis was used to analyse the data and inform ongoing modifications and developments to the assurance and accreditation process as well as the associated supporting resources. The study resulted in the development of a formal quality assurance and accreditation process together with a suite of targeted resources that were identified as critical for success. The research findings also provided some insights into the institutional enablers that were antecedents to successful quality assurance and accreditation processes as well as meaningful change in the educational practices of academics. While longitudinal data will be collected to further assess the value of the assurance and accreditation process on educational quality, early indicators are that there has been a change in the pedagogical perspectives and activities of academic staff and growing momentum to explore opportunities to further enhance and develop Courses. This presentation will explain the formal quality assurance and accreditation process as well as the component parts, which resulted from this study. The targeted resources that were developed will be described, the pertinent factors that contributed to the success of the process will be discussed and early indicators of sustainable academic change as well as suggestions for future research will be outlined.Keywords: academic standards, quality assurance and accreditation, phenomenological study, process, resources
Procedia PDF Downloads 3771178 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity
Authors: Monika Rezacova
Abstract:
Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes
Procedia PDF Downloads 1591177 The Sociological and Legal Study of Sexual Assault in Nigeria
Authors: Adeshina Francis Akindutre, Adebolarin Adekanle
Abstract:
Sexual assault is often considered as the most extreme form of violence that degrades and humiliates women in society. It is a widespread public health and psychological problem in Nigeria. Criminologically, sexual assaults have been considered as one of the several violent crimes targeted specifically at women and perpetrated by men. This paper attempts to examine the types of sexual assaults in Nigeria, the strategies used by the offenders, the causes, the psychological effects on the victims and the possible solutions of sexual assaults. This work also, examines the law prohibiting sexual assault in Nigeria. The authors made use of three theories: the victim precipitation approach, the feminist approach, and the psychological approach which explain why sexual assault takes place in society. Finally, it takes the Stockholm Syndrome into consideration (the treatment of victims).Keywords: feminist, victims, offenders, psychological, sexual assault, Stockholm Syndrome
Procedia PDF Downloads 5581176 Application to Molecular Electronics of Thin Layers of Organic Materials
Authors: M. I. Benamrani, H. Benamrani
Abstract:
In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution
Procedia PDF Downloads 881175 Different Types of Bismuth Selenide Nanostructures for Targeted Applications: Synthesis and Properties
Authors: Jana Andzane, Gunta Kunakova, Margarita Baitimirova, Mikelis Marnauza, Floriana Lombardi, Donats Erts
Abstract:
Bismuth selenide (Bi₂Se₃) is known as a narrow band gap semiconductor with pronounced thermoelectric (TE) and topological insulator (TI) properties. Unique TI properties offer exciting possibilities for fundamental research as observing the exciton condensate and Majorana fermions, as well as practical application in spintronic and quantum information. In turn, TE properties of this material can be applied for wide range of thermoelectric applications, as well as for broadband photodetectors and near-infrared sensors. Nanostructuring of this material results in improvement of TI properties due to suppression of the bulk conductivity, and enhancement of TE properties because of increased phonon scattering at the nanoscale grains and interfaces. Regarding TE properties, crystallographic growth direction, as well as orientation of the nanostructures relative to the growth substrate, play significant role in improvement of TE performance of nanostructured material. For instance, Bi₂Se₃ layers consisting of randomly oriented nanostructures and/or of combination of them with planar nanostructures show significantly enhanced in comparison with bulk and only planar Bi₂Se₃ nanostructures TE properties. In this work, a catalyst-free vapour-solid deposition technique was applied for controlled obtaining of different types of Bi₂Se₃ nanostructures and continuous nanostructured layers for targeted applications. For example, separated Bi₂Se₃ nanoplates, nanobelts and nanowires can be used for investigations of TI properties; consisting from merged planar and/or randomly oriented nanostructures Bi₂Se₃ layers are useful for applications in heat-to-power conversion devices and infrared detectors. The vapour-solid deposition was carried out using quartz tube furnace (MTI Corp), equipped with an inert gas supply and pressure/temperature control system. Bi₂Se₃ nanostructures/nanostructured layers of desired type were obtained by adjustment of synthesis parameters (process temperature, deposition time, pressure, carrier gas flow) and selection of deposition substrate (glass, quartz, mica, indium-tin-oxide, graphene and carbon nanotubes). Morphology, structure and composition of obtained Bi₂Se₃ nanostructures and nanostructured layers were inspected using SEM, AFM, EDX and HRTEM techniques, as well as home-build experimental setup for thermoelectric measurements. It was found that introducing of temporary carrier gas flow into the process tube during the synthesis and deposition substrate choice significantly influence nanostructures formation mechanism. Electrical, thermoelectric, and topological insulator properties of different types of deposited Bi₂Se₃ nanostructures and nanostructured coatings are characterized as a function of thickness and discussed.Keywords: bismuth seleinde, nanostructures, topological insulator, vapour-solid deposition
Procedia PDF Downloads 2311174 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D
Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach
Abstract:
We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity
Procedia PDF Downloads 4461173 Discovering New Organic Materials through Computational Methods
Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner
Abstract:
Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings
Procedia PDF Downloads 2531172 Use of Ing-Formed and Derived Verbal Nominalization in American English: A Survey Applied to Native American English Speakers
Authors: Yujia Sun
Abstract:
Research on nominalizations in English can be traced back to at least the 1960s and even centered in the field nowadays. At the very beginning, the discussion was about the relationship between verbs and nouns, but then it moved to the distinct senses embodied in different forms of nominals, namely, various types of nominalizations. This paper tries to address the issue that how speakers perceive different forms of verbal nouns, and what might influence their perceptions. The data are collected through a self-designed questionnaire targeted at native speakers of American English, and the employment of the Corpus of Contemporary American English (COCA). The results show that semantic differences between different forms of nominals do play a role in people’s preference to certain form than another. But it still awaits more explorations to see how the frequency of usage is interrelates to this issue.Keywords: corpus of contemporary American English, derived nominalization, frequency of usage, ing-formed nominalization
Procedia PDF Downloads 1791171 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries
Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru
Abstract:
Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.Keywords: cyanogen, cassava starch, food security, starch yield
Procedia PDF Downloads 2201170 Emotion Regulation Mediates the Relationship between Affective Disposition and Depression
Authors: Valentina Colonnello, Paolo Maria Russo
Abstract:
Studies indicate a link between individual differences in affective disposition and depression, as well as between emotion dysregulation and depression. However, the specific role of emotion dysregulation domains in mediating the relationship between affective disposition and depression remains largely unexplored. In three cross-sectional quantitative studies (total n = 1350), we explored the extent to which specific emotion regulation difficulties mediate the relationship between personal distress disposition (Study 1), separation distress as a primary emotional trait (Study 2), and an insecure, anxious attachment style (Study 3) and depression. Across all studies, we found that the relationship between affective disposition and depression was mediated by difficulties in accessing adaptive emotion regulation strategies. These findings underscore the potential for modifiable abilities that could be targeted through preventive interventions.Keywords: emotions, mental health, individual traits, personality
Procedia PDF Downloads 661169 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids
Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan
Abstract:
Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers
Procedia PDF Downloads 3931168 Food Supply Chain Optimization: Achieving Cost Effectiveness Using Predictive Analytics
Authors: Jayant Kumar, Aarcha Jayachandran Sasikala, Barry Adrian Shepherd
Abstract:
Public Distribution System is a flagship welfare programme of the Government of India with both historical and political significance. Targeted at lower sections of society,it is one of the largest supply chain networks in the world. There has been several studies by academics and planning commission about the effectiveness of the system. Our study focuses on applying predictive analytics to aid the central body to keep track of the problem of breach of service level agreement between the two echelons of food supply chain. Each shop breach is leading to a potential additional inventory carrying cost. Thus, through this study, we aim to show that aided with such analytics, the network can be made more cost effective. The methods we illustrate in this study are applicable to other commercial supply chains as well.Keywords: PDS, analytics, cost effectiveness, Karnataka, inventory cost, service level JEL classification: C53
Procedia PDF Downloads 5331167 Synthesis of Beetosan's Hydrogels with Yellow Tea
Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak
Abstract:
The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.Keywords: Beetosan, hygrogels, materials, yellow tea
Procedia PDF Downloads 275