Search results for: rapid detection
5344 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2245343 Comparison of Serological and Molecular Diagnosis of Cerebral Toxoplasmosis in Blood and Cerebrospinal Fluid in HIV Infected Patients
Authors: Berredjem Hajira, Benlaifa Meriem, Becheker Imene, Bardi Rafika, Djebar Med Reda
Abstract:
Recent acquired or reactivation T.gondii infection is a serious complication in HIV patients. Classical serological diagnosis relies on the detection of anti-Toxoplasma immunoglobulin ; however, serology may be unreliable in HIV immunodeficient patients who fail to produce significant titers of specific antibodies. PCR assays allow a rapid diagnosis of Toxoplasma infection. In this study, we compared the value of the PCR for diagnosing active toxoplasmosis in cerebrospinal fluid and blood samples from HIV patients. Anti-Toxoplasma antibodies IgG and IgM titers were determined by ELISA. In parallel, nested PCR targeting B1 gene and conventional PCR-ELISA targeting P30 gene were used to detect T. gondii DNA in 25 blood samples and 12 cerebrospinal fluid samples from patients in whom toxoplasmic encephalitis was confirmed by clinical investigations. A total of 15 negative controls were used. Serology did not contribute to confirm toxoplasmic infection, as IgG and IgM titers decreased early. Only 8 out 25 blood samples and 5 out 12 cerebrospinal fluid samples PCRs yielded a positive result. 5 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples. However, conventional nested B1 PCR gave best results than the P30 gene one for the detection of T.gondii DNA in both samples. All samples from control patients were negative. This study demonstrates the unusefulness of the serological tests and the high sensitivity and specificity of PCR in the diagnosis of toxoplasmic encephalitis in HIV patients.Keywords: cerebrospinal fluid, HIV, Toxoplasmosis, PCR
Procedia PDF Downloads 3795342 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 3135341 Generation of Automated Alarms for Plantwide Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.Keywords: detection, monitoring, process data, noise
Procedia PDF Downloads 2525340 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1745339 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2965338 Integrated Mass Rapid Transit (MRT) and Bus System in Singapore: MRT Ridership and the Provision of Feeder Bus Services
Authors: Devansh Jain, Shu Ting Goh
Abstract:
With the aim of improving the quality of life of people of Singapore with provision of better transport services, Land and Transport Authority Singapore recently published its Master Plan 2013. The major objectives mentioned in the plan were to make a comprehensive public transport network with better quality Mass Rapid Transit, bus services along with cycling and walking. MRT is the backbone of the transport system in Singapore, and to promote and increase the MRT ridership, good accessibility to access the MRT stations is a necessity. The aim of this paper is to investigate the relationship between MRT ridership and the provision of feeder bus services in Singapore planning areas and also to understand the hub and spoke model adopted by Singapore for provision of transport services. The findings of the study will lead to conclusions made from the Regression model developed by the various factors affecting MRT ridership, and hence will benefit to enhance the services provided by the system.Keywords: quality of life, public transport, mass rapid transit, ridership
Procedia PDF Downloads 2485337 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 945336 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1015335 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection
Procedia PDF Downloads 3715334 Comparing Nonverbal Deception Detection of Police Officers and Human Resources Students in the Czech Republic
Authors: Lenka Mynaříková, Hedvika Boukalová
Abstract:
The study looks at the ability to detect nonverbal deception among police officers and management students in the Czech Republic. Respondents from police departments (n=197) and university students of human resources (n=161) completed a deception detection task and evaluated veracity of the statements of suspects in 21 video clips from real crime investigations. Their evaluations were based on nonverbal behavior. Voices in the video clips were modified so that words were not recognizable, yet paraverbal voice characteristics were preserved. Results suggest that respondents have a tendency to lie bias based on their profession. In the evaluation of video clips, stereotypes also played a significant role. The statements of suspects of a different ethnicity, younger age or specific visual features were considered deceitful more often. Research might be beneficial for training in professions that are in need of deception detection techniques.Keywords: deception detection, police officers, human resources, forensic psychology, forensic studies, organizational psychology
Procedia PDF Downloads 4315333 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater
Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi
Abstract:
Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination
Procedia PDF Downloads 685332 Comparing Community Detection Algorithms in Bipartite Networks
Authors: Ehsan Khademi, Mahdi Jalili
Abstract:
Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks
Procedia PDF Downloads 6255331 16s rRNA Based Metagenomic Analysis of Palm Sap Samples From Bangladesh
Authors: Ágota Ábrahám, Md Nurul Islam, Karimane Zeghbib, Gábor Kemenesi, Sazeda Akter
Abstract:
Collecting palm sap as a food source is an everyday practice in some parts of the world. However, the consumption of palm juice has been associated with regular infections and epidemics in parts of Bangladesh. This is attributed to fruit-eating bats and other vertebrates or invertebrates native to the area, contaminating the food with their body secretions during the collection process. The frequent intake of palm juice, whether as a processed food product or in its unprocessed form, is a common phenomenon in large areas. The range of pathogens suitable for human infection resulting from this practice is not yet fully understood. Additionally, the high sugar content of the liquid makes it an ideal culture medium for certain bacteria, which can easily propagate and potentially harm consumers. Rapid diagnostics, especially in remote locations, could mitigate health risks associated with palm juice consumption. The primary objective of this research is the rapid genomic detection and risk assessment of bacteria that may cause infections in humans through the consumption of palm juice. Utilizing state-of-the-art third-generation Nanopore metagenomic sequencing technology based on 16S rRNA, and identified bacteria primarily involved in fermenting processes. The swift metagenomic analysis, coupled with the widespread availability and portability of Nanopore products (including real-time analysis options), proves advantageous for detecting harmful pathogens in food sources without relying on extensive industry resources and testing.Keywords: raw date palm sap, NGS, metabarcoding, food safety
Procedia PDF Downloads 555330 Analysis of Collision Avoidance System
Authors: N. Gayathri Devi, K. Batri
Abstract:
The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability.Keywords: collision avoidance system, time to collision, time to turn, turn radius
Procedia PDF Downloads 5495329 Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots
Authors: Anisha Mandal, Swambabu Varanasi
Abstract:
Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe.Keywords: carbon dots, photoluminescence, sensor, moringa oleifera gum
Procedia PDF Downloads 1145328 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1495327 Grain Boundary Detection Based on Superpixel Merges
Authors: Gaokai Liu
Abstract:
The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.Keywords: grain boundary detection, image segmentation, material images, region merging
Procedia PDF Downloads 1705326 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 4445325 Trend Detection Using Community Rank and Hawkes Process
Authors: Shashank Bhatnagar, W. Wilfred Godfrey
Abstract:
We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection
Procedia PDF Downloads 3845324 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery
Authors: Evans Belly, Imdad Rizvi, M. M. Kadam
Abstract:
Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.Keywords: building detection, shadow detection, landscape generation, label, partitioning, very high resolution (VHR) satellite imagery
Procedia PDF Downloads 3145323 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 725322 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 1195321 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification
Authors: Mohammad Sarchami, Mohsen Zeinalkhani
Abstract:
Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm
Procedia PDF Downloads 2485320 Molecular Biomonitoring of Bacterial Pathogens in Wastewater
Authors: Desouky Abd El Haleem, Sahar Zaki
Abstract:
This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.Keywords: multiplex PCR, bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, Salmonella spp.
Procedia PDF Downloads 4495319 Early Screening of Risk Ergonomics among Workers at Madura's Batik Industrial: Rapid Entire Body Assessment and Quick Exposure Checklist
Authors: Abdul Kadir, L. Meily Kurniawidjaja
Abstract:
Batik Madura workers are exposed to many Musculoskeletal Disorders risk factors, particularly Low Back Pain (LBP). This study was conducted as an early detection of ergonomic risk level on Workers Industrial Sentra Batik Madura in Dusun Banyumas, Klampar Subdistrict, Proppo Pamekasan, Madura, East Java. This study includes 12 workers who 11 workers had pain in the upper and lower part of the neck, back, wrist right hand, also 10 workers had pain in the right shoulder. This is a descriptive observational study with cross-sectional approach. Qualitative research by observing workers activity such as draw and putting the wax motif, fabric dyeing, fabric painting, discoloration, washing, and drying. The results are workers have identified ergonomic hazards such as awkward postures, twisting movements, repetitive, and static work postures. Using the method of REBA and QEC, the results get a very high-risk level of activity in each of Madura batik making process is the draw and putting the wax motif, coloring, painting, discoloration, washing, and drying. The level of risk can be reduced by improvement of work equipment include the provision of seats, strut fabric, high settings furnaces, drums, coloring basin, and washing tub.Keywords: activities of Madura's batik, ergonomic risk level, equipment, QEC (Quick Exposure Checklist), REBA (Rapid Entire Body Assessment)
Procedia PDF Downloads 1945318 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 3645317 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 1235316 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching
Authors: Weitao Lin
Abstract:
To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.Keywords: natural language processing, Chinese event detection, rules matching, dependency parsing
Procedia PDF Downloads 1415315 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 169