Search results for: power subsystem
5912 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software
Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather
Abstract:
As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software
Procedia PDF Downloads 2755911 DG Power Plants Placement and Evaluation of its Effect on Improving Voltage Security Margin in Radial Distribution Networks
Authors: Atabak Faramarzpour, Mohsen Mohammadian
Abstract:
In this article, we introduce the stability of power system voltage and state DG power plants placement and its effect on improving voltage security margin in radial distribution networks. For this purpose, first, important definitions in voltage stability area such as small and big voltage disturbances, instability, and voltage collapse, and voltage security definitions are stated. Then, according to voltage collapse time, voltage stability is classified and each one's characteristics are stated.Keywords: DG power plants, evaluation, voltage security, radial distribution networks
Procedia PDF Downloads 6715910 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: probability, probability density function, stochastic, turbulence
Procedia PDF Downloads 5875909 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems
Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun
Abstract:
Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.Keywords: application management, hardware management, power electronics, building blocks
Procedia PDF Downloads 5215908 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities
Authors: Pranjal Johri, Misbah Ul-Islam
Abstract:
Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing: From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage. During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor. A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing. Extended over excitation test to be done in case above propositions are observed to be violated during testing.Keywords: power transfoemrs, no load current, DGA, power factor
Procedia PDF Downloads 1045907 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 6415906 Approximation Algorithms for Peak-Demand Reduction
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics
Procedia PDF Downloads 945905 Education, Technology and Geopolitics: The Arab World as an Instance
Authors: Abdulrahman Al Lily
Abstract:
This article spans the domains of education, technology and geo-politics. It uses as an instance the Arab scholarship of education and technology, viewing its scholarly community through the geographical lens of regionalism. It enquires into the power relations among scholars in the Arab region and between scholars in the Arab region and their fellows from outside the region. It addresses the research question: to what extent have region-informed factors affected the scholarly community of education and technology in the Arab region? This question was answered by both qualitative and numerical enquiry, analysing documents, interviews and a survey of native Arabic-speaking scholars. Having analysed the data using the grounded theory approach, two categories of power relations among scholars were identified: power relations within a particular region and power relations across regions. Considering these two categories, a theoretical proposition could be posited that there could be power relationships among scholars that exist on a regional basis. The recommendation is therefore that research should further shed light upon the regionalistic (and thus geographically informed political) dynamics of scholarly communities.Keywords: education, technology, politics, geography, regionalism, Arab
Procedia PDF Downloads 5095904 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria
Authors: Okorowo Cyril Agochi
Abstract:
More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.Keywords: electric, power, renewable energy, solar energy, sun, tropical
Procedia PDF Downloads 5435903 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators
Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.Keywords: distributed generators, firefly technique, optimization, power loss
Procedia PDF Downloads 5335902 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 5725901 Nighttime Power Generation Using Thermoelectric Devices
Authors: Abdulrahman Alajlan
Abstract:
While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management
Procedia PDF Downloads 605900 Contractors Perspective on Causes of Delays in Power Transmission Projects
Authors: Goutom K. Pall
Abstract:
At the very heart of the power system, power transmission (PT) acts as an essential link between power generation and distribution. Timely completion of PT infrastructures is therefore crucial to support the development of power system as a whole. Yet despite the importance, studies on PT infrastructure development projects are embryonic and, hence, PT projects undergoing widespread delays worldwide. These delay factors are idiosyncratic and identifying the critical delay factors is essential if the PT industry professionals are to complete their projects efficiently and within the expected timeframes. This study identifies and categorizes 46 causes of PT project delay under ten major groups using six sector expert’s recommendations studied by a preliminary questionnaire survey. Based on the experts’ strong recommendations, two new groups are introduced in the final questionnaire survey: sector specific factors (SSF) and general factors (GF). SSF pertain to delay factors applicable only to the PT projects, while GF represents less biased samples with shared responsibilities of all project parties involved in a project. The study then uses 112 data samples from the contractors to rank the delay factors using relative importance index (RII). The results reveal that SSF, GF and external factors are the most critical groups, while the highest ranked delay factors include the right of way (RoW) problems of transmission lines (TL), delay in payments, frequent changes in TL routes, poor communication and coordination among the project parties and accessibility to TL tower locations. Finally, recommendations are made to minimize the identified delay. The findings are expected to be of substantial benefit to professionals in minimizing time overrun in PT projects implementation, as well as power generation, power distribution, and non-power linear construction projects worldwide.Keywords: delay, project delay, power transmission projects, time-overruns
Procedia PDF Downloads 1785899 Evaluation of Low Power Wi-Fi Modules in Simulated Ocean Environments
Authors: Gabriel Chenevert, Abhilash Arora, Zeljko Pantic
Abstract:
The major problem underwater acoustic communication faces is the low data rate due to low signal frequency. By contrast, the Wi-Fi communication protocol offers high throughput but limited operating range due to the attenuation effect of the sea and ocean medium. However, short-range near-field underwater wireless power transfer systems offer an environment where Wi-Fi communication can be effectively integrated to collect data and deliver instructions to sensors in underwater sensor networks. In this paper, low-power, low-cost off-the-shelf Wi-Fi modules are explored experimentally for four selected parameters for different distances between units and water salinities. The results reveal a shorter operating range and stronger dependence on water salinity than reported so far for high-end Wi-Fi modules.Keywords: Wi-Fi, wireless power transfer, underwater communications, ESP
Procedia PDF Downloads 1165898 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control
Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy
Abstract:
In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping
Procedia PDF Downloads 5055897 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.Keywords: power factor correction, zero-voltage transition, zero-current transition, soft switching
Procedia PDF Downloads 8035896 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS
Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu
Abstract:
The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS
Procedia PDF Downloads 4075895 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 2385894 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters
Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava
Abstract:
Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predictedKeywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)
Procedia PDF Downloads 6425893 Analysis of Lightweight Register Hardware Threat
Authors: Yang Luo, Beibei Wang
Abstract:
In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.Keywords: side-channel analysis, hardware Trojan, register transfer level, dynamic power
Procedia PDF Downloads 2795892 Importance of Location Selection of an Energy Storage System in a Smart Grid
Authors: Vanaja Rao
Abstract:
In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid
Procedia PDF Downloads 2995891 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood
Authors: B. Selma, S. Chouraqui
Abstract:
The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system
Procedia PDF Downloads 1775890 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 1565889 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System
Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah
Abstract:
The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.Keywords: WIND, solar, microgrid, energy
Procedia PDF Downloads 1085888 Design and Study of a Low Power High Speed 8 Transistor Based Full Adder Using Multiplexer and XOR Gates
Authors: Biswarup Mukherjee, Aniruddha Ghoshal
Abstract:
In this paper, we propose a new technique for implementing a low power high speed full adder using 8 transistors. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have high speed operation for the sub components. The explored method of implementation achieves a high speed low power design for the full adder. Simulated results indicate the superior performance of the proposed technique over conventional 28 transistor CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.Keywords: high speed low power full adder, 2-T MUX, 3-T XOR, 8-T FA, pass transistor logic, CMOS (complementary metal oxide semiconductor)
Procedia PDF Downloads 3485887 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables
Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran
Abstract:
This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.Keywords: power management, reactive power, subsea cables, variable shunt reactors
Procedia PDF Downloads 2515886 Aeration of Fish Pond Aquaculture Using Wind Power
Authors: Fatima Hassan Mohamed Ahmed
Abstract:
This study discusses the possibility techniques of using wind energy to operate the aeration devices which are used in the intensive fish farm for Nile Tilapia. The main objective is to show at what expense this renewable energy source can increase the production. The study was done for the oxygen consumption by 1 kg fishes of tilapia put in 1 m3. The theoretical study shows that the fishes consume around 0.5 gO2/hour when using paddle wheels with average oxygen transfer rate 2.6 kgO2/kW.h comparing this with dissolved oxygen consumed by fishes it was found that 1 kW will aerate 5200 m3 and the same power will aerate 1800 m3 when using air diffuser system with average oxygen transfer rate 0.9 kgO2/kW.h, this power can be supplied by the wind turbine with dimension with a tower 6 m high and diameter 2.7 m.Keywords: aeration, fish pond, wind, power
Procedia PDF Downloads 6385885 Improvement of the Calciferous Minerals Floatability through the Application of High-Power Electromagnetic Pulses
Authors: Valentine A. Chanturiya, Igor Zh. Bunin, Maria V. Ryazantseva
Abstract:
The modification of structural and chemical properties of fluorite, scheelite and calcite under the impact of high-power electromagnetic pulses (HPEMP-treatment) were studied with the help of adsorption of acid-base indicators and atomic – force microscopy (AFM). The HPEMP-treatment during the space of 30 seconds resulted in the intensification of fluorite surface the electron-donating ability and acceptor properties of calcite and scheelite surfaces. High-power electromagnetic treatment of the single minerals resulted in the improvement of the calciferous minerals floatability. The rising of the scheelite recovery is 10 – 12%, fluorite – 5 – 6%, calcite – 7 – 8%.Keywords: calcite, fluorite, scheelite, high power electromagnetic pulses, floatability
Procedia PDF Downloads 2885884 Analysis of Solar Thermal Power Plant in Algeria
Authors: M. Laissaoui
Abstract:
The present work has for objective the simulation of a hybrid solar combined cycle power plant, compared with combined cycle conventional (gas turbine and steam turbine), this type of power plants disposed an solar tour (heliostat field and volumetric receiver) insurant a part of the thermal energy necessary for the functioning of the gas turbine. This solar energy serves to feed with heat the combustion air of the gas turbine when he out of the compressor and the front entered the combustion chamber. The simulation of even central and made for three zones deferential to know the zone of Hassi R' mel, Bechare, and the zone of Messaad wilaya of El djelfa. The radiometric and meteorological data arise directly from the software meteonorme 7. The simulation of the energy performances is made by the software TRNSYS 16.1.Keywords: concentrating solar power, heliostat, thermal, Algeria
Procedia PDF Downloads 4685883 Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool
Authors: Qiao Pei Wen, Ng Seng Lee, Sae Tae Veera, Chiu Ah Fong, Loke Weng Onn
Abstract:
Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition.Keywords: PECVD SiN deposition, sapphire wafer, substrate electrical conductivity, RF power coupling, high frequency RF power, low frequency RF power, film deposition rate, thickness uniformity
Procedia PDF Downloads 376