Search results for: petroleum distillation
217 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin
Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat
Abstract:
Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.Keywords: chemical composition, essential oil, eucalyptol, gas chromatography
Procedia PDF Downloads 327216 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources
Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche
Abstract:
The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil
Procedia PDF Downloads 160215 Oil-Spill Monitoring in Istanbul Strait and Marmara Sea by RASAT Remote Sensing Images
Authors: Ozgun Oktar, Sevilay Can, Cengiz V. Ekici
Abstract:
The oil spill is a form of pollution caused by releasing of a liquid petroleum hydrocarbon into the marine environment. Considering the growth of ship traffic, increasing of off-shore oil drilling and seaside refineries affect the risk of oil spill upward. The oil spill is easy to spread to large areas when occurs especially on the sea surface. Remote sensing technology offers the easiest way to control/monitor the area of the oil spill in a large region. It’s usually easy to detect pollution when occurs by the ship accidents, however monitoring non-accidental pollution could be possible by remote sensing. It is also needed to observe specific regions daily and continuously by satellite solutions. Remote sensing satellites mostly and effectively used for monitoring oil pollution are RADARSAT, ENVISAT and MODIS. Spectral coverage and transition period of these satellites are not proper to monitor Marmara Sea and Istanbul Strait continuously. In this study, RASAT and GOKTURK-2 are suggested to use for monitoring Marmara Sea and Istanbul Strait. RASAT, with spectral resolution 420 – 730 nm, is the first Turkish-built satellite. GOKTURK-2’s resolution can reach up to 2,5 meters. This study aims to analyze the images from both satellites and produce maps to show the regions which have potentially affected by spills from shipping traffic.Keywords: Marmara Sea, monitoring, oil spill, satellite remote sensing
Procedia PDF Downloads 423214 Performance Evaluation of a Spouted Bed Bioreactor (SBBR) for the Biodegradation of 2, 4 Dichlorophenol
Authors: Taghreed Al-Khalid, Muftah El-Naas
Abstract:
As an economical and environmentally friendly technology, biological treatment has been shown to be one of the most promising approaches for the removal of numerous types of organic water pollutants such as Chlorophenols, which are hazardous pollutants commonly encountered in wastewater generated by the petroleum and petrochemical industries. This study aimed at evaluating the performance of a spouted bed bioreactor (SBBR) for aerobic biodegradation of 2, 4 dichlorophenol (DCP) by a commercial strain of Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel particles. The SBBR is characterized by systematic intense mixing, resulting in improvement of the biodegradation rates through reducing the mass transfer limitations. The reactor was evaluated in both batch and continuous mode in order to evaluate its hydrodynamics in terms of stability and response to shock loads. The SBBR was able to maintain a stable operation and recovered quickly to its normal operating mode once the shock load had been removed. In comparison to a packed bed reactor bioreactor, the SBBR proved to be more efficient and more stable, achieving a removal percentage and throughput of 80% and 1414 g/m3day, respectively. In addition, the biodegradation of chlorophenols was mathematically modeled using a dynamic modeling approach in order to assess reaction and mass transfer limitations. The results confirmed the effectiveness of the use of the PVA immobilization technique for the biodegradation of phenols.Keywords: biodegradation, 2, 4 dichlorophenol, immobilization, polyvinyl alcohol (PVA) gel
Procedia PDF Downloads 181213 Static Characterization of a Bio-Based Sandwich in a Humid Environment
Authors: Zeineb Kesentini, Abderrahim El Mahi, Jean Luc Rebiere, Rachid El Guerjouma, Moez Beyaoui, Mohamed Haddar
Abstract:
Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness.Keywords: auxetic, bending tests, biobased composite, sandwich structure, 3D printing
Procedia PDF Downloads 153212 Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter
Authors: Dheyaa Wajid Abbood, Ali Mohammed Tawfeeq Baqer, Eitizaz Awad Jasim
Abstract:
The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.Keywords: Marginal water , Toxic matter, Stepped Cascade weir, limestone trickling filter
Procedia PDF Downloads 395211 Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation
Authors: Abeer A. Q. Ahmed, Tracey McKay
Abstract:
The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals.Keywords: Bacillus safensis LCX, high valued chemicals, lignocellulosic enzymes, solid state fermentation
Procedia PDF Downloads 295210 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings
Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.Keywords: thermal energy storage, buildings, phase change materials, alcohols
Procedia PDF Downloads 97209 Use of Electrokinetic Technology to Enhance Chemical and Biological Remediation of Contaminated Sands and Soils
Authors: Brian Wartell, Michel Boufadel
Abstract:
Contaminants such as polycyclic aromatic hydrocarbons (PAHs) are compounds present in crude and petroleum oils and are known to be toxic and often carcinogenic. Therefore, a major effort is placed on tracking their subsurface soil concentrations following an oil spill. The PAHs can persist for years in the subsurface especially if there is a lack of oxygen. Both aerobic and anaerobic biodegradation of PAHs encounter the difficulties of both nutrient transport and bioavailability (proximal access) to the organisms of the contaminants. A technology, known as electrokinetics (EK or EK-BIO for ‘electrokinetic bioremediation’) has been found to transport efficiently nutrients or other chemicals in the subsurface. Experiments were conducted to demonstrate migration patterns in both sands and clay for both ionic and nonionic compounds and aerobic biodegradation studies were conducted with soil spiked with Polycyclic Aromatic Hydrocarbons yielding interesting results. In one set of experiment, Self-designed electrokinetic setups were constructed to examine the differences in electromigration and electroosmotic rates. Anionic and non-ionic dyes were used to visualize these phenomena, respectively. In another experiment, a silt-clay soil was spiked with three low-molecular-weight compounds (fluorene, phenanthrene, fluoranthene) and placed within self-designed electrokinetic setups and monitored for aerobic degradation. Plans for additional studies are in progress including the transport of peroxide through anaerobic sands.Keywords: bioavailability, bioremediation, electrokinetics, subsurface transport
Procedia PDF Downloads 154208 Inclined Convective Instability in a Porous Layer Saturated with Non-Newtonian Fluid
Authors: Rashmi Dubey
Abstract:
The study aims at investigating the onset of thermal convection in an inclined porous layer saturated with a non-Newtonian fluid. The layer is infinitely extended and has a finite width confined between two boundaries with constant pressure conditions, where the lower one is maintained at a higher temperature. Over the years, this area of research has attracted many scientists and researchers, for it has a plethora of applications in the fields of sciences and engineering, such as in civil engineering, geothermal sites, petroleum industries, etc.Considering the possibilities in a practical scenario, an inclined porous layer is considered, which can be used to develop a generalized model applicable to any inclination. Using the isobaric boundaries, the hydrodynamic boundary conditions are derived for the power-law model and are used to obtain the basic state flow. The convection in the basic state flow is driven by the thermal buoyancy in the flow system and is carried away further due to hydrodynamic boundaries. A linear stability analysis followed by a normal-mode analysis is done to investigate the onset of convection in the buoyancy-driven flow. The analysis shows that the convective instability is always initiated by the non-traveling modes for the Newtonian fluid, but prevails in the form of oscillatory modes, for up to a certain inclination of the porous layer. However, different behavior is observed for the dilatant and pseudoplastic fluids.Keywords: thermal convection, linear stability, porous media flow, Inclined porous layer
Procedia PDF Downloads 123207 Engineered Biopolymers as Novel Sustainable Resin Binder for Wood Composites
Authors: Somaieh Salehpour, Douglas Ireland, Chris Anderson, Charles Markessini
Abstract:
Over the last few years, advancements have been made around improving sustainability for wood composite boards. One of the last and most challenging sustainability hurdles is finding a viable alternative to petroleum-based resin binders. In today’s market, no longer is formaldehyde emission control sufficient to meet the requirements of many architects and end-use consumers. Even the use of highly reactive isocyanates is considered by many as not sustainable enough since these chemicals are manufactured from classical fossil fuel sources. The emergence of biopolymers specifically engineered for usage as wood composite binders has been successfully demonstrated in this paper as a viable option towards a truly renewable wood composite board. Recent technology advancements driven by EcoSynthetix and CHIMAR have exploited the advantages of using an engineered biopolymer. The evidence shows that this renewable technology has the potential to be used as a partial up to full replacement of classical formaldehyde technologies. Numerous trials, both in the lab and at industrial scale, have shown that a renewable binder of the proposed technology can produce a commercially viable board in a traditional industrial setting. The ultimate goal of this work is to provide evidence that a sustainable binder alternative can be used to make a commercial board while at the same time improving the total cost of manufacturing.Keywords: no added formaldehyde, renewable, biopolymers, sustainable wood composites, engineered biopolymers
Procedia PDF Downloads 400206 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries
Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani
Abstract:
Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation
Procedia PDF Downloads 515205 The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation
Authors: Judith Mwakalonge, Geophrey Mbatta, Cuthbert Ruseruka, Gurcan Comert, Saidi Siuhi
Abstract:
Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated.Keywords: electric vehicles, EV charging stations, social economic factors, charging networks
Procedia PDF Downloads 82204 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 440203 Technical and Environmental Improvement of LNG Carrier's Propulsion Machinery by Using Jatropha Biao Diesel Fuel
Authors: E. H. Hegazy, M. A. Mosaad, A. A. Tawfik, A. A. Hassan, M. Abbas
Abstract:
The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation.Keywords: dual fuel diesel engine, natural gas, Jatropha Methyl Easter, volumetric efficiency, emissions, CFD
Procedia PDF Downloads 667202 Pinch Technology for Minimization of Water Consumption at a Refinery
Authors: W. Mughees, M. Alahmad
Abstract:
Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 477201 Effect of Credit Use on Technical Efficiency of Cassava Farmers in Ondo State, Nigeria
Authors: Adewale Oladapo, Carolyn A. Afolami
Abstract:
Agricultural production should be the major financial contributor to the Nigerian economy; however, the petroleum sector had taken the importance attached to this sector. The situation tends to be more worsening unless necessary attention is given to adequate credit supply among food crop farmers. This research analyses the effect of credit use on the technical efficiency of cassava farmers in Ondo State, Nigeria. Primary data were collected from two hundred randomly selected cassava farmers through a multistage sampling procedure in the study area. Data were analysed using descriptive statistics and stochastic frontier analysis (SFA). Findings revealed that 95.0% of the farmers were male while 56.0% had no formal education and were married. The SFA showed that cassava farmer’s efficiency increased with farm size, herbicide and planting material at 5%,10% and 1% respectively but decreased with fertilizer application at 1% level while farmers’ age, education, household size, experience and access to credit increased technical inefficiency at 10%. The study concluded that cassava farmers are technically inefficient in the use of farm resources and recommended that adequate and workable agricultural policy measures that will ensure availability and efficient fertilizer distribution should be put in place to increase efficiency. Furthermore, the government should encourage youth participation in cassava production and ensure improvement in farmer’s access to credit to increase farmer’s technical efficiency.Keywords: agriculture, access to credit, cassava farmers, technical efficiency
Procedia PDF Downloads 183200 Environmental Cost and Benefits Analysis of Different Electricity Option: A Case Study of Kuwait
Authors: Mohammad Abotalib, Hamid Alhamadi
Abstract:
In Kuwait, electricity is generated from two primary sources that are heavy fuel combustion and natural gas combustion. As Kuwait relies mainly on petroleum-based products for electricity generation, identifying and understanding the environmental trade-off of such operations should be carefully investigated. The life cycle assessment (LCA) tool is applied to identify the potential environmental impact of electricity generation under three scenarios by considering the material flow in various stages involved, such as raw-material extraction, transportation, operations, and waste disposal. The three scenarios investigated represent current and futuristic electricity grid mixes. The analysis targets six environmental impact categories: (1) global warming potential (GWP), (2) acidification potential (AP), (3) water depletion (WD), (4) acidification potential (AP), (4) eutrophication potential (EP), (5) human health particulate matter (HHPM), and (6) smog air (SA) per one kWh of electricity generated. Results indicate that one kWh of electricity generated would have a GWP (881-1030) g CO₂-eq, mainly from the fuel combustion process, water depletion (0.07-0.1) m³ of water, about 68% from cooling processes, AP (15.3-17.9) g SO₂-eq, EP (0.12-0.14) g N eq., HHPA (1.13- 1.33)g PM₂.₅ eq., and SA (64.8-75.8) g O₃ eq. The variation in results depend on the scenario investigated. It can be observed from the analysis that introducing solar photovoltaic and wind to the electricity grid mix improves the performance of scenarios 2 and 3 where 15% of the electricity comes from renewables correspond to a further decrease in LCA results.Keywords: energy, functional uni, global warming potential, life cycle assessment, energy, functional unit
Procedia PDF Downloads 135199 Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration
Authors: K. S. Shiny, R. Sundararaj
Abstract:
Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries.Keywords: coconut shell pyrolytic oil distillate, eco-friendly wood protection, termites, wood borers, wood decay fungi
Procedia PDF Downloads 371198 Disaster Management and Resilience: A Conceptual Synthesis of Local
Authors: Oshienemen Albert, Dilanthi Amaratunga, Richard Haigh
Abstract:
Globally, disasters of any form can affect the environment, built environment, the waterways, societies, nations and communities in diverse areas. The such impacts could cut across, economic loss, social setting, cultural and livelihood structures of affected population. Thus, the raise of disaster impacts across developing nations are alarming with decades impact due to the lack of hard and soft infrastructural development across communities, inconsistency in the governmental policy and implementation, making it difficult for disaster affected communities to bounce back when necessary, especially in Nigeria. The Nigeria disasters, especially oil spillages have affected diverse communities across the Niger Delta region for decades with little or nothing as external support for the broken livelihood structure, cultural and economic damages of the people. Though, in the spirit of contribution to the communities affected by oil spill and negative consequence of petroleum production, the federal government at different times established some impressionistic bodies and agencies to oversee the affairs of the region as with regards to oil spillages and development. Thus, the agencies contributions are yet to manifest in practice. This amplifies the quest for the structural clarities of the management systems and the resilience’s of the communities, to better equip the communities for any such disaster. Therefore, the study sets to explore the Nigerian disaster management systems and resilience concept at local community level. Thus, desk-based approach and interviews are employed for the synthesis while, drawing conclusion and recommendations.Keywords: disaster, community, management, resilience
Procedia PDF Downloads 184197 A Review on Microbial Enhanced Oil Recovery and Controlling Its Produced Hydrogen Sulfide Effects on Reservoir and Transporting Pipelines
Authors: Ali Haratian, Soroosh Emami Meybodi
Abstract:
Using viable microbial cultures within hydrocarbon reservoirs so as to the enhancement of oil recovery through metabolic activities is exactly what we recognize as microbial enhanced oil recovery (MEOR). In similar to many other processes in industries, there are some cons and pros following with MEOR. The creation of sulfides such as hydrogen sulfide as a result of injecting the sulfate-containing seawater into hydrocarbon reservoirs in order to maintain the required reservoir pressure leads to production and growth of sulfate reducing bacteria (SRB) approximately near the injection wells, turning the reservoir into sour; however, SRB is not considered as the only microbial process stimulating the formation of sulfides. Along with SRB, thermochemical sulfate reduction or thermal redox reaction (TSR) is also known to be highly effective at resulting in having extremely concentrated zones of ?2S in the reservoir fluids eligible to cause corrosion. Owing to extent of the topic, more information on the formation of ?₂S is going to be put finger on. Besides, confronting the undesirable production of sulfide species in the reservoirs can lead to serious operational, environmental, and financial problems, in particular the transporting pipelines. Consequently, conjuring up reservoir souring control strategies on the way production of oil and gas is the only way to prevent possible damages in terms of environment, finance, and manpower which requires determining the compound’s reactivity, origin, and partitioning behavior. This article is going to provide a comprehensive review of progress made in this field and the possible advent of new strategies in this technologically advanced world of the petroleum industry.Keywords: corrosion, hydrogen sulfide, NRB, reservoir souring, SRB
Procedia PDF Downloads 222196 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 103195 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill
Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens
Abstract:
Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity
Procedia PDF Downloads 538194 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions
Authors: Megh Patel, Arjun Chauhan, Jay Thakkar
Abstract:
Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers
Procedia PDF Downloads 256193 Organic Geochemical Characterization of the Ordovician Source Rock in the Chotts Basin, Southern Tunisia
Authors: Anis Belhaj Mohamed, Moncef Saidi, Mohamed Soussi, Ibrahim Bouazizi, Monia Ben Jrad
Abstract:
This paper summarizes the results of Rock-Eval pyrolysis and biomarker data of shale samples collected from the Ordovician age (Llanvirnian-Llandeilian) (Azzel Formation) in the Chotts basin southern part of Tunisia. The results are supported by analysis of cutting samples from wells. The Azzel shales has poor to moderate, occasionally good, potential for sourcing oil and gas with Total Organic Carbon (TOC) content varying from 0.80 to 4.49 % and petroleum potential (PP) values varying between 0.68 to 9.20 Kg of HC/t rock in Baguel and Alaguia wells. However, the Azzel Formation show poor to fair TOC and PP in Elfranig and HajBrahim wells not exceeding 1.10% and 1.05 kg HC/t of rock respectively. The Hydrogen Index (HI) and the Oxygen Index (OI) values of 95–165 mg S2/g TOC and of 33–108 mg CO2/g rock relatively show that the Ordovician shales exhibit type II Kerogen that reached the main oil window stage and that the organic matter was bad preserved, Tmax values of 435 – 448°C indicate the organic matter is mature. The biomarker features of the extract samples are characterized by high proportion of tricyclic terpanes that are dominated by C23 and C21 tricyclic terpanes. The hopanes fraction is dominated by C29 and C30 hopanes. The Ordovician shales show a predominance of C27 over C29 steranes (C27/C29>1) and relatively high proportions of diasteranes supporting the shaly character of the source rock.Keywords: biomarkers, organic geochemistry, ordovician source rock, diasteranes
Procedia PDF Downloads 505192 Learning Outcomes Alignment across Engineering Core Courses
Authors: A. Bouabid, B. Bielenberg, S. Ainane, N. Pasha
Abstract:
In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.Keywords: curriculum alignment, horizontal and vertical progression, performance indicators, skill level
Procedia PDF Downloads 222191 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill
Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens
Abstract:
Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity
Procedia PDF Downloads 532190 Role of Collaborative Cultural Model to Step on Cleaner Energy: A Case of Kathmandu City Core
Authors: Bindu Shrestha, Sudarshan R. Tiwari, Sushil B. Bajracharya
Abstract:
Urban household cooking fuel choice is highly influenced by human behavior and energy culture parameters such as cognitive norms, material culture and practices. Although these parameters have a leading role in Kathmandu for cleaner households, they are not incorporated in the city’s energy policy. This paper aims to identify trade-offs to transform resident behavior in cooking pattern towards cleaner technology from the questionnaire survey, observation, mapping, interview, and quantitative analysis. The analysis recommends implementing a Collaborative Cultural Model (CCM) for changing impact on the neighborhood from the policy level. The results showed that each household produces 439.56 kg of carbon emission each year and 20 percent used unclean technology due to low-income level. Residents who used liquefied petroleum gas (LPG) as their cooking fuel suffered from an energy crisis every year that has created fuel hoarding, which ultimately creates more energy demand and carbon exposure. In conclusion, the carbon emission can be reduced by improving the residents’ energy consumption culture. It recommended the city to use holistic action of changing habits as soft power of collaboration in two-way participation approach within residents, private sectors, and government to change their energy culture and behavior in policy level.Keywords: energy consumption pattern, collaborative cultural model, energy culture, fuel stacking
Procedia PDF Downloads 133189 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts
Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo
Abstract:
Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia
Procedia PDF Downloads 174188 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals
Authors: Funda Ates
Abstract:
Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.Keywords: Barley straw, pyrolysis, catalyst, phenolics
Procedia PDF Downloads 225