Search results for: leachate /solid waste treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11627

Search results for: leachate /solid waste treatment

11207 A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)

Authors: Mohd Amran, Chan Yi Jing, Chong Chien Hwa

Abstract:

Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%).

Keywords: palm oil mill effluent, in-ground lagoon anaerobic digester, anaerobic digestion, biogas

Procedia PDF Downloads 70
11206 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization

Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes

Abstract:

Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.

Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas

Procedia PDF Downloads 160
11205 Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents

Authors: Luísa P. Cruz-Lopes, Artur Figueirinha, Isabel Brás, Bruno Esteves

Abstract:

Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.

Keywords: chemical composition, lignocellulosic residues, ecotoxicological safety, wastewater

Procedia PDF Downloads 262
11204 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 40
11203 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 318
11202 Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System

Authors: Rachmat Mauludin, Novita R. Kusuma, Diky Mudhakir

Abstract:

Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively.

Keywords: solid lipid nanoparticle (SLN), famotidine (FMT), physicochemical properties, release study

Procedia PDF Downloads 333
11201 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems

Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque

Abstract:

The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.

Keywords: re-use, residue, sustainable, water treatment plants, sludge

Procedia PDF Downloads 456
11200 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions

Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana

Abstract:

Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.

Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 133
11199 Neutralization of Sulphurous Waste (AMD) Using Recycled Waste Concrete

Authors: Ercument Koc, Banu Yaylali, Gulsen Tozsin, Haci Deveci

Abstract:

Re-using of concrete waste materials for the neutralization of acid mine drainage (AMD) can protect the environment and contribute the national economy. The aim of this study was to investigate the prevention of AMD formation and heavy metal release using concrete wastes which are alkaline and generated by demolition of buildings within the urban renewal process. Shake flask test was conducted to determine the neutralization effects. Concrete wastes are rich in CaCO3 and they are used as a pH regulator for AMD neutralization. The results showed that pH of the AMD increased from 3.33 to 6.84 with the application of concrete waste materials.

Keywords: AMD, neutralization, sulphurous waste, urban renewal

Procedia PDF Downloads 277
11198 Recycling Motivations and Barriers in Kota Kinabalu, Malaysia

Authors: Jasmine Adela Mutang, Rosnah Ismail, Chua Bee Seok, Ferlis Bahari, Lailawati Madlan, Walton Wider, Rickless Das

Abstract:

Waste projection is increasing and most landfills in Malaysia are running out of space. Due to that, waste management is now becoming a major challenge. The most sustainable solution is by practicing sustainable practices such as recycling. Since 1993 the government has launched several recycling campaigns and implemented the National Recycling Policy. However, public participation is still very low. Only 10.5% of solid waste was recycled up to now which is far below than of in developed countries. Nevertheless the government is optimistic that the target of 22% recycling by 2020 will be achieved if there is a positive flow pattern in sustainable practices in particular recycling behavior among Malaysian. Understanding public motivations towards recycling domestic waste are important to improve current recycling rate. Thus this study attempts to identify what are the possible motivations and hindrances for the public to recycle. Open-ended questions format were administered to 484 people in Kota Kinabalu, Sabah, Malaysia. Two specific questions we asked to explore their general determinants and barriers in practicing recycling: “What motivates you to recycle?” and “What are the barriers you encountered in doing recycling activities?” Thematic analysis was conducted on the open-ended questions in which themes were created with the raw comments. It was found that the underlying recycling motivations are awareness’ towards the environment, benefits to the society and individual, and social influence. Non participations are influence by attitudes, commitment, facilities, knowledge, inconvenience, and enforcement.

Keywords: recycling motivation, recycling barrier, sustainable, household waste

Procedia PDF Downloads 522
11197 Designing a Waste Management System for an Urban Area in Sri Lanka

Authors: R. A. C. K. Gunathilaka, P. T. D. Peiris, O. S. M. Jayawardane, S. M. A. I. Kulathunga

Abstract:

Waste management is one of the predominant aspects of resource utilization and sustainability. The absence of a proper waste management system may lead to adverse troubles and catastrophic tragedies ultimately. Sri Lanka has faced different predicaments for a long time due to the unavailability of a systematic manner in the waste management process. The main objective of this research is to design an efficient waste management system for an urban area in Sri Lanka. The research was dispersed into three categories as biodegradable, non-biodegradable, and hazardous waste. Different waste materials were researched for each category by probing the entire process from the beginning to final disposal for perceiving the prevailing problems in the waste management system. The distinctive segment of this research is comparing efficient foreign waste management strategies with efficacious approaches on increasing public commitment to uncovering cognizable ways of implementing such a system in the Sri Lankan context. Waste management systems in Singapore, Japan, Malaysia, USA, Maldives, and China incorporated their exemplary plan of action on tackling the waste problem in diverse sectors were studied. Ultimately, three coherent models were proposed for each category pertaining to the concepts of circular economy and lean manufacturing from the inception to the final disposal of the waste. This research also includes concealed financial opportunities regarding waste management.

Keywords: circular economy, efficient waste management system, lean manufacturing, sustainability, urban area

Procedia PDF Downloads 146
11196 Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters

Authors: Ujwal Kishor Zore, Shankar Balajirao Kausley, Aniruddha Bhalchandra Pandit

Abstract:

There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment.

Keywords: waste water treatment, activated sludge process, mathematical modeling, optimization

Procedia PDF Downloads 117
11195 Development and Characterization of Topical 5-Fluorouracil Solid Lipid Nanoparticles for the Effective Treatment of Non-Melanoma Skin Cancer

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Background: The topical and systemic toxicity associated with present nonmelanoma skin cancer (NMSC) treatment therapy using 5-Fluorouracil (5-FU) make it necessary to develop a novel delivery system having lesser toxicity and better control over drug release. Solid lipid nanoparticles offer many advantages like: controlled and localized release of entrapped actives, nontoxicity, and better tolerance. Aim:-To investigate safety and efficacy of 5-FU loaded solid lipid nanoparticles as a topical delivery system for the treatment of nonmelanoma skin cancer. Method: Topical solid lipid nanoparticles of 5-FU were prepared using Compritol 888 ATO (Glyceryl behenate) as lipid component and pluronic F68 (Poloxamer 188), Tween 80 (Polysorbate 80), Tyloxapol (4-(1,1,3,3-Tetramethylbutyl) phenol polymer with formaldehyde and oxirane) as surfactants. The SLNs were prepared with emulsification method. Different formulation parameters viz. type and ratio of surfactant, ratio of lipid and ratio of surfactant:lipid were investigated on particle size and drug entrapment efficiency. Results: Characterization of SLNs like–Transmission Electron Microscopy (TEM), Differential Scannig calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Particle size determination, Polydispersity index, Entrapment efficiency, Drug loading, ex vivo skin permeation and skin retention studies, skin irritation and histopathology studies were performed. TEM results showed that shape of SLNs was spherical with size range 200-500nm. Higher encapsulation efficiency was obtained for batches having higher concentration of surfactant and lipid. It was found maximum 64.3% for SLN-6 batch with size of 400.1±9.22 nm and PDI 0.221±0.031. Optimized SLN batches and marketed 5-FU cream were compared for flux across rat skin and skin drug retention. The lesser flux and higher skin retention was obtained for SLN formulation in comparison to topical 5-FU cream, which ensures less systemic toxicity and better control of drug release across skin. Chronic skin irritation studies lacks serious erythema or inflammation and histopathology studies showed no significant change in physiology of epidermal layers of rat skin. So, these studies suggest that the optimized SLN formulation is efficient then marketed cream and safer for long term NMSC treatment regimens. Conclusion: Topical and systemic toxicity associated with long-term use of 5-FU, in the treatment of NMSC, can be minimized with its controlled release with significant drug retention with minimal flux across skin. The study may provide a better alternate for effective NMSC treatment.

Keywords: 5-FU, topical formulation, solid lipid nanoparticles, non melanoma skin cancer

Procedia PDF Downloads 488
11194 The Role of Environmental Citizenship in Household Waste Management

Authors: Lizette Grobler

Abstract:

Although the notion of environmental citizenship has become an established concept linked to scholarship on sustainability internationally, it is not the case in South Africa. This literature review aims to investigate whether the concept is a viable construct in the South African household waste management context. This literature review firstly examines different approaches to environmental citizenship and the normative notions of environmental values, attitudes, and behaviour advocated by proponents of each tradition. Secondly, this paper deals with the application of environmental citizenship as a measure to address household waste. Thirdly, this paper interrogates the utilization of the concept in South African scholarly literature on waste management. The paper argues for the introduction of the concept as a potential approach to behavioural change in the household waste management context.

Keywords: environmental citizenship, environmental responsibility, household waste, ownership of waste

Procedia PDF Downloads 127
11193 Manufacturing Commercial Bricks with Construction and Demolition Wastes

Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal

Abstract:

This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.

Keywords: commercial brick, construction and demolition waste, manufacturing, recycling

Procedia PDF Downloads 324
11192 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 210
11191 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management

Authors: Fatemehsadat Mousaviabarbekouh

Abstract:

Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.

Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting

Procedia PDF Downloads 73
11190 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. Despite it is very important, the research study on schedule waste management is very little in the highway industry even though there is a rapid growth of highway operation in the Asian region. It should be noted that there are many unnoticeable wastes in highway industry that should be managed properly. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as compared to factories in which the factories are located on specified areas whereas, highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations, 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on schedule waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of scheduled waste such as cancer, throat irritation and respiration problem.

Keywords: Asia region, environment, highway industry, scheduled waste

Procedia PDF Downloads 398
11189 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa

Authors: Nesengani Elelwani Clinton

Abstract:

This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.

Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach

Procedia PDF Downloads 73
11188 Bioconversion of Orange Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation

Authors: N. Hachemi, A. Nouani, A. Benchabane

Abstract:

The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. a polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa . Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.

Keywords: bioconversion, orange wastes, optimization, pectinase

Procedia PDF Downloads 351
11187 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.

Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements

Procedia PDF Downloads 397
11186 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 240
11185 Determinants of Effective Food Waste Management in an Urban Area in Pakistan

Authors: Nazia Jabeen, Denis Hyams-Ssekasi

Abstract:

The study focuses on the determinants of food waste management (FWM) in one of the urban areas of Pakistan. One hundred and two households from the urban areas of Pakistan took part in the study via self-completed questionnaires, and data were analyzed. The research findings indicate that food waste management is a recurring issue, and households must do more to minimize or create business opportunities. Most households agree that food waste has significant implications for the community if not utilized and managed correctly. The value creation deriving from this zero-value resource provides a platform where householders see the benefit of food waste management. Based on the findings, this study acknowledges that food waste has significant economic and social impacts on the community. It concludes that minimization and optimum utilization of food waste create a pathway to business opportunities in urban areas.

Keywords: economic, social, food waste management, business opportunities, value creation

Procedia PDF Downloads 63
11184 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 331
11183 Environmental Risk Assessment of Mechanization Waste Collection Scheme in Tehran

Authors: Amin Padash, Javad Kazem Zadeh Khoiy, Hossein Vahidi

Abstract:

Purpose: The mechanization system for the urban services was implemented in Tehran City in the year 2004 to promote the collection of domestic wastes; in 2010, in order to achieve the objectives of the project of urban services mechanization and qualitative promotion and improve the urban living environment, sustainable development and optimization of the recyclable solid wastes collection systems as well as other dry and non-organic wastes and conformity of the same to the modern urban management methods regarding integration of the mechanized urban services contractors and recycling contractors and in order to better and more correct fulfillment of the waste separation and considering the success of the mechanization plan of the dry wastes in most of the modern countries. The aim of this research is analyzing of Environmental Risk Assessment of the mechanization waste collection scheme in Tehran. Case Study: Tehran, the capital of Iran, with the population of 8.2 million people, occupies 730 km land expanse, which is 4% of total area of country. Tehran generated 2,788,912 ton (7,641 ton/day) of waste in year 2008. Hospital waste generation rate in Tehran reaches 83 ton/day. Almost 87% of total waste was disposed of by placing in a landfill located in Kahrizak region. This large amount of waste causes a significant challenge for the city. Methodology: To conduct the study, the methodology proposed in the standard Mil-St-88213 is used. This method is an efficient method to examine the position in opposition to the various processes and the action is effective. The method is based on the method of Military Standard and Specialized in the military to investigate and evaluate options to locate and identify the strengths and weaknesses of powers to decide on the best determining strategy has been used. Finding and Conclusion: In this study, the current status of mechanization systems to collect waste and identify its possible effects on the environment through a survey and assessment methodology Mil-St-88213, and then the best plan for action and mitigation of environmental risk has been proposed as Environmental Management Plan (EMP).

Keywords: environmental risk assessment, mechanization waste collection scheme, Mil-St-88213

Procedia PDF Downloads 413
11182 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying

Authors: Hyeongdo Jeong, Jong Kook Lee

Abstract:

Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.

Keywords: zirconia, solid content, granulation, spray drying

Procedia PDF Downloads 193
11181 A Study of Farming Earthworms Commercial with Organic Waste

Authors: Phrutsaya Piyanusorn

Abstract:

This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.

Keywords: farmin earthworms, commercial, organic waste, marketing management

Procedia PDF Downloads 300
11180 Impact of COVID-19 on Hospital Waste

Authors: Caroline Correia, Stefani Perna, John Gaughan, Elizabeth Cerceo

Abstract:

Introduction: The COVID-19 pandemic has brought unprecedented changes to how hospitals function on a daily basis. Increased personal protective equipment (PPE) usage and measures to pre-package, separate, and decontaminate have the potential to increase the waste load. However, limiting non-essential surgeries drastically reduces operating room (OR) waste, and restricting visitation policies to contain outbreaks may help conserve resources. The impact of these policy changes with increased disposable PPE usage on hospital production of waste is unknown. Methods: Waste produced in pounds (lbs) was measured for January through June during both 2019 and 2020 through Stericycle in Cooper University Hospital in Camden, NJ. This timeframe was selected since the pandemic began in January 2020 in the US. The total waste produced during this time was 328,623 lbs in 2019 and 306,454 lbs in 2020. Using Poisson counts (α=.05), less waste was produced in 2020 (p < 0.001). The amount of sharps and regulated medical waste (grossly bloody items) were both significantly decreased as well (p < 0.0001, p=0.0002), and these account for 10-15% of the total waste produced. Discussion: Despite the increased usage of disposable PPE, overall hospital waste was decreased during the pandemic as compared to prior. As surgeries are estimated to be responsible for up to one-half of waste produced by hospitals, it is possible that constraint on elective procedures contributed to the decreased waste in all three categories; estimates of a 35% decrease in surgical volume would be expected to impact waste production. The effects of the pandemic on waste production should continue to be monitored to understand the environmental impact as health systems resume backlogged surgeries at a higher volume.

Keywords: COVID-19, hospital, surgery, waste

Procedia PDF Downloads 83
11179 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production

Authors: Lubomir Machuca, Vit Fara

Abstract:

Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.

Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry

Procedia PDF Downloads 211
11178 The Impact of Women on Urban Sustainability (Case Study: Three Districts of Tehran)

Authors: Reza Mokhtari Malekabadi, Leila Jalalabadi, Zahra Kiyani Ghaleh No

Abstract:

Today, systems of management and urban planning, attempt to reach more sustainable development through monitoring developments, urban development and development plans. Monitoring of changes in the urban places and sustainable urban development accounted a base for the realization of worthy goals urban sustainable development. The importance of women in environmental protection programs is high enough that in 21 agenda has been requested from all countries to allocate more shares to women in their policies. On the other hand, urban waste landfill has become one of the environmental concerns in modern cities. This research assumes that the impact of women on recycling, reduction and proper waste landfill is much more than men. For this reason, three districts; Yousef Abad, Heshmatieh and Nezam Abad are gauged through questionnaire and using the analytical research hypothesis model. This research will be categorized as functional research. The results have shown that noticing the power of women, their participation towards realization of the development objectives and programs can be used in solving their problems.

Keywords: citizens, urban, environmental, sustainability, solid waste, Tehran

Procedia PDF Downloads 333