Search results for: fundus images
2011 A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images
Authors: Bülent Kantar, Numan Ünaldı
Abstract:
This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing.Keywords: watermarking, DWT, DSWT, copy right protection, RGB
Procedia PDF Downloads 5382010 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"
Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad
Abstract:
In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation
Procedia PDF Downloads 3882009 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation
Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga
Abstract:
Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.Keywords: classification, coastline, color, sea-land segmentation
Procedia PDF Downloads 2522008 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique
Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit
Abstract:
In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes
Procedia PDF Downloads 2532007 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications
Authors: Jacob Wahl, Jane Zhang
Abstract:
This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming
Procedia PDF Downloads 1432006 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap
Authors: Sabri Serkan Gulluoglu
Abstract:
It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.Keywords: remote sensing, satellite imaging, gis, computer science, information
Procedia PDF Downloads 3222005 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 4142004 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 1452003 Secure E-Pay System Using Steganography and Visual Cryptography
Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi
Abstract:
Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.Keywords: image security, random LSB, steganography, visual cryptography
Procedia PDF Downloads 3322002 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 4592001 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron
Procedia PDF Downloads 3932000 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Zineb Nougrara
Abstract:
In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: satellite image, road network, nodes, image analysis and processing
Procedia PDF Downloads 2761999 „Real and Symbolic in Poetics of Multiplied Screens and Images“
Authors: Kristina Horvat Blazinovic
Abstract:
In the context of a work of art, one can talk about the idea-concept-term-intention expressed by the artist by using various forms of repetition (external, material, visible repetition). Such repetitions of elements (images in space or moving visual and sound images in time) suggest a "covert", "latent" ("dressed") repetition – i.e., "hidden", "latent" term-intention-idea. Repeating in this way reveals a "deeper truth" that the viewer needs to decode and which is hidden "under" the technical manifestation of the multiplied images. It is not only images, sounds, and screens that are repeated - something else is repeated through them as well, even if, in some cases, the very idea of repetition is repeated. This paper examines serial images and single-channel or multi-channel artwork in the field of video/film art and video installations, which in a way implies the concept of repetition and multiplication. Moving or static images and screens (as multi-screens) are repeated in time and space. The categories of the real and the symbolic partly refer to the Lacan registers of reality, i.e., the Imaginary - Symbolic – Real trinity that represents the orders within which human subjectivity is established. Authors such as Bruce Nauman, VALIE EXPORT, Ragnar Kjartansson, Wolf Vostell, Shirin Neshat, Paul Sharits, Harun Farocki, Dalibor Martinis, Andy Warhol, Douglas Gordon, Bill Viola, Frank Gillette, and Ira Schneider, and Marina Abramovic problematize, in different ways, the concept and procedures of multiplication - repetition, but not in the sense of "copying" and "repetition" of reality or the original, but of repeated repetitions of the simulacrum. Referential works of art are often connected by the theme of the traumatic. Repetitions of images and situations are a response to the traumatic (experience) - repetition itself is a symptom of trauma. On the other hand, repeating and multiplying traumatic images results in a new traumatic effect or cancels it. Reflections on repetition as a temporal and spatial phenomenon are in line with the chapters that link philosophical considerations of space and time and experience temporality with their manifestation in works of art. The observations about time and the relation of perception and memory are according to Henry Bergson and his conception of duration (durée) as "quality of quantity." The video works intended to be displayed as a video loop, express the idea of infinite duration ("pure time," according to Bergson). The Loop wants to be always present - to fixate in time. Wholeness is unrecognizable because the intention is to make the effect infinitely cyclic. Reflections on time and space end with considerations about the occurrence and effects of time and space intervals as places and moments "between" – the points of connection and separation, of continuity and stopping - by reference to the "interval theory" of Soviet filmmaker DzigaVertov. The scale of opportunities that can be explored in interval mode is wide. Intervals represent the perception of time and space in the form of pauses, interruptions, breaks (e.g., emotional, dramatic, or rhythmic) denote emptiness or silence, distance, proximity, interstitial space, or a gap between various states.Keywords: video installation, performance, repetition, multi-screen, real and symbolic, loop, video art, interval, video time
Procedia PDF Downloads 1761998 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 2331997 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 921996 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1541995 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1241994 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1781993 Principle Component Analysis on Colon Cancer Detection
Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti
Abstract:
Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis
Procedia PDF Downloads 2121992 Neuron Imaging in Lateral Geniculate Nucleus
Authors: Sandy Bao, Yankang Bao
Abstract:
The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex
Procedia PDF Downloads 2841991 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 1361990 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area
Authors: Kamalpreet Kaur, Renu Dhir
Abstract:
Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.Keywords: climate, satellite images, prediction, classification
Procedia PDF Downloads 791989 Image Retrieval Using Discrete Cosine Transform of Diagonal Projections
Authors: Saleh Ali Alshehri, Omar Tarek Subaih, Mohammed Saad Alghamdi
Abstract:
With the vast visual contents of social media and Internet applications, fast and simple image-retrieval systems are necessary. Content-based image-retrieval methods are suitable even though the AI methods start becoming dominant. In this study, a simple and efficient method is presented. An image is binarized and then divided diagonally into two triangles. The projections along both sides of the diagonal are calculated. Discrete cosine transform is applied to these projections, and few coefficients are retained. The Euclidean distance method is then used to search for the image in a dataset of images. The method takes a fraction of a second to retrieve an image from a dataset of 1327 images.Keywords: content-based image retrieval, diagonal projections, discrete cosine transform, Euclidean distance
Procedia PDF Downloads 61988 Radiologic Assessment of Orbital Dimensions Among Omani Subjects: Computed Tomography Imaging-Based Study
Authors: Marwa Al-Subhi, Eiman Al-Ajmi, Mallak Al-Maamari, Humood Al-Dhuhli, Srinivasa Rao
Abstract:
The orbit and its contents are affected by various pathologies and craniofacial anomalies. Sound knowledge of the normal orbital dimensions is clinically essential for successful surgical outcomes and also in the field of forensic anthropology. Racial, ethnic, and regional variations in the orbital dimensions have been reported. This study sought to determine the orbital dimensions of Omani subjects who had been referred for computed tomography (CT) images at a tertiary care hospital. A total of 273 patients’ CT images were evaluated retrospectively by using an electronic medical records database. The orbital dimensions were recorded using both axial and sagittal planes of CT images. The mean orbital index (OI) was found to be 83.25±4.83 and the prevalent orbital type was categorized as mesoseme. The mean orbital index was 83.34±5.05 and 83.16±4.57 in males and females, respectively, with their difference being statistically not significant (p=0.76). A statistically significant association was observed between the right and left orbits with regard to horizontal distance (p<0.05) and vertical distance (p<0.01) of orbit and OI (p<0.05). No significant difference between the OI and age groups was observed in both males and females. The mean interorbital distance and interzygomatic distance were found to be 19.45±1.52 mm and 95.59±4.08 mm, respectively. Both of these parameters were significantly higher in males (p<0.05). Results of the present study provide reference values of orbital dimensions in Omani subjects. The prevalent orbital type of Omani subjects is mesoseme, which is a hallmark of the white race.Keywords: orbit, orbital index, mesoseme, ethnicity, variation
Procedia PDF Downloads 1531987 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information
Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach
Abstract:
Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.Keywords: mutual information, EMPCA, Scott, probability distributions
Procedia PDF Downloads 2501986 Localization of Mobile Robots with Omnidirectional Cameras
Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo
Abstract:
Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using an omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.Keywords: mobile robots, localization, omnidirectional camera, estimating positions
Procedia PDF Downloads 4451985 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 2021984 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks
Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan
Abstract:
A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.Keywords: prostate, deep neural network, seed implant, ultrasound
Procedia PDF Downloads 2051983 Deployment of Matrix Transpose in Digital Image Encryption
Authors: Okike Benjamin, Garba E J. D.
Abstract:
Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.Keywords: image encryption, matrices, pixel, matrix transpose
Procedia PDF Downloads 4251982 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 130