Search results for: energy efficiency in historical buildings
15473 Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption
Authors: Sang-Wook Lee, So-Yeon Jeon, Min-Gi Cho, Dae-Young Shin, Sung-Ho Hwang
Abstract:
Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm.Keywords: continuous mode changing, engine fuel consumption, excavator, fuel efficiency, IMV
Procedia PDF Downloads 38815472 Energy Box Programme in the Netherlands
Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen
Abstract:
This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.Keywords: energy-saving behavior, energy poverty, poverty, private rental sector
Procedia PDF Downloads 12015471 A Brief Overview of Seven Churches in Van Province
Authors: Eylem Güzel, Soner Guler, Mustafa Gulen
Abstract:
Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective.Keywords: earthquake, historical structures, Van province, church
Procedia PDF Downloads 54815470 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee
Abstract:
Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander
Procedia PDF Downloads 14915469 Ratio Energy and Protein of Dietary Based on Rice Straw Ammoniated on Productivity of Male Simenthal Cattle
Authors: Mardiati Zain, Yetti Marlida, Elihasridas Elihasridas, Erpomen Erpomen, Andri Andri
Abstract:
Background: Livestock productivity is greatly influenced by the energy and protein balance in diet. This study aimed to determine the energy and protein balance of male Simenthal cattle diet with protein and energy levels. The experimental design used was a randomized block design (RBD) 2x3x3 factorial design. There are two factors namely A level of energy diet that is 65% and 70% TDN. Factor B is a protein level of diet used were 10, 12 and 14% and each treatment is repeated three times. The weight of Simenthal cattle used ranged between 240 - 300 kg. Diet consisted of ammoniated rice straw and concentrated with ratio 40:60. Concentrate consisted of palm kernel cake, rice brain, cassava, mineral, and urea. The variables measured were digestibility of dry matter, organic matter and fiber, dry matter intake, daily gain, feed efficiency and blood characteristic. Results: There was no interaction between protein and energy level of diet on the nutrients intake (DM intake, OM intake, CP intake), weight gain and efficiency (P < 0.01). There was an interaction between protein and energy level of diet on digestibility (DM, OM, CP and allantoin urine (P > 0.01) Nutrients intake decreases with increasing levels of energy and protein diet, while nutrient digestibility, Avarage daily gain and feed efficiency increases with increasing levels of energy and protein diet. Conclusions: The result can be concluded that the best treatment was A2B1 which is energy level 70% TDN and protein 10%, where are dry matter intake 7.66 kg/d, daily gain 1.25 kg/d, feed efficiency 16.12%, and dry matter and organic matter digestibility 64.08 and 69.42% respectively.Keywords: energy and protein ratio, simenthal cattle, rice straw ammoniated, digestibility
Procedia PDF Downloads 35915468 Site Effect Observations after 2016 Amatrice Earthquake, Central Italy
Authors: Giovanni Forte, Melania De Falco, Antonio Santo
Abstract:
On 24th August 2016, central Italy was affected by a Mw 6.0 earthquake, representing the main shock of a long seismic sequence, which had a second shock Mw 6.6 on 26th October and lasts still nowadays. After the event, several field survey were carried out in the affected areas, which is made of historical masonry buildings. The post event reconnaissance missions were aimed at collecting information on the damage states of the buildings, the triggering of the landslides and the relationships with site effects. In this paper, the data collected after the event are analyzed considering the role of the geological and geomorphological setting and the ground motion scenario. The buildings displayed an uneven damage distribution, which was affected by both topographic and stratigraphic amplification. As pertains the landslides, which were the most recurrent among the ground failures, consisted mainly of rock falls and subordinately of translational slides. Finally, the collected knowledge showed a strong contribution of the local geological and geomorphological site condition on the resulting damage.Keywords: Amatrice earthquake, damage states, landslides, site effects
Procedia PDF Downloads 32715467 Project Stakeholders' Perceptions of Sustainability: A Case Example From the Turkish Construction Industry
Authors: F. Heyecan Giritli, Gizem Akgül
Abstract:
Because of the raising population of world; the need for houses, buildings and infrastructures are increasing rapidly. Energy and water consumption, waste production continues to increase. If this situation of resources continues, there will be a significant loss for next generations. Therefore, there are a lot of researches and solutions developed in the world. Also sustainability criteria are collected together by some countries to serve construction industry with certification systems. Sustainable building production process’s scope requires different path from traditional building production process. Moreover, the key objective of sustainable buildings is that the process includes whole life cycle duration. The process approaches from the decision of the project to the end of it; so the project team is needed from the beginning of the integrated project delivery model. Further more, by defining project team at the beginning of the project provides communication among the team members and defined problem solving and decision making methods. In this research includes the certification systems among the world to comprehend the head lines and assessment criteria. Therefore, it is understand that usually all green building criteria have the same contents. The aim of this research is to assess the sustainable project stakeholder’ perceptions in Turkish construction industry from the point of occupation, job title and years of experience. Therefore, a survey is made to assess the perceptions of each attendant. In Turkey, sustainability criteria are not clearly defined; on the other hand some regulations like waste management, energy efficiency are made by legal agencies. LEED certification system is the most popular system in Turkey that has attended and certificated. From the LEED official data, it’s understood that 308 project registered in Turkey. Therefore, LEED sustainability criteria are used in the survey. Head lines of LEED certification criteria; sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality, innovation and regional priority are indicated to assess the perceptions of survey participants. Moreover, only surveying of criteria are not enough; so the equipment, methods, risks and benefits also considered.Keywords: LEED, sustainability, perceptions, stakeholders, construction, Turkey, risk, benefit
Procedia PDF Downloads 30315466 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN
Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu
Abstract:
In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.Keywords: artificial intelligence, earthquake, performance, reinforced concrete
Procedia PDF Downloads 46715465 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom
Authors: Tugba Gurler, Irfan Kurtbas
Abstract:
Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.Keywords: phase change material, regional energy demand, roof layers, thermal energy storage
Procedia PDF Downloads 10715464 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective
Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli
Abstract:
In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks
Procedia PDF Downloads 9215463 Performance Analysis of Photovoltaic Solar Energy Systems
Authors: Zakariyya Hassan Abdullahi, Zainab Suleiman Abdullahi, Nuhu Alhaji Muhammad
Abstract:
In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented.Keywords: photovoltaic, renewable, performance, efficiency, energy
Procedia PDF Downloads 52015462 Understanding the Historical Consciousness of Children and Young People
Authors: Kay Carroll
Abstract:
Creating historical consciousness in children and young people is critical to global inclusion and engagement. In a context of international and technological flux, children are confronted with shifting national identities. Within this quantitative study of Australian children and young people, the concept and development of historical consciousness are explored. The analysis reports on how children and young people are connected through national, collective, and personal narratives to understand historically significant events and changes, anchor themselves to universal and intergenerational traditions and norms, be open to divergent perspectives and resilient to perpetual socio-cultural shifts. This paper presents the development and factors that shape national historical consciousness in children and young people using established international frameworks and stages of historical consciousness. This research reports on quantitative surveys conducted with over 680 school children from ages 12 years to 19 years within Australian schools. Concepts of global citizenship, inclusion, and engagement with national historical memory and significance are explored. Findings identify the social benefits of collective and personal historical consciousness and consider the current barriers and enablers in developing a young person’s historical consciousness for the future.Keywords: curriculum, global citizenship, historical consciousness, significance
Procedia PDF Downloads 20115461 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 8315460 Diagrid Structural System
Authors: K. Raghu, Sree Harsha
Abstract:
The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.Keywords: diagrid, bracings, structural, building
Procedia PDF Downloads 38915459 Evaluation and Preservation of Post-War Concrete Architecture: The Case of Lithuania
Authors: Aušra Černauskienė
Abstract:
The heritage of modern architecture is closely related to the materiality and technology used to implement the buildings. Concrete is one of the most ubiquitous post-war building materials with enormous aesthetic and structural potential that architects have creatively used for everyday buildings and exceptional architectural objects that have survived. Concrete's material, structural, and architectural development over the post-war years has produced a remarkably rich and diverse typology of buildings, for implementation of which unique handicraft skills and industrialized novelties were used. Nonetheless, in the opinion of the public, concrete architecture is often treated as ugly and obsolete, and in Lithuania, it also has negative associations with the scarcity of the Soviet era. Moreover, aesthetic non-appreciation is not the only challenge that concrete architecture meets. It also no longer meets the needs of contemporary requirements: buildings are of poor energy class, have little potential for transformation, and have an obsolete surrounding environment. Thus, as a young heritage, concrete architecture is not yet sufficiently appreciated by society and heritage specialists, as it takes a short time to rethink what they mean from a historical perspective. However, concrete architecture is considered ambiguous but has its character and specificity that needs to be carefully studied in terms of cultural heritage to avoid the risk of poor renovation or even demolition, which has increasingly risen in recent decades in Lithuania. For example, several valuable pieces of post-war concrete architecture, such as the Banga restaurant and the Summer Stage in Palanga, were demolished without understanding their cultural value. Many unique concrete structures and raw concrete surfaces were painted or plastered, paying little attention to the appearance of authentic material. Furthermore, it raises a discussion on how to preserve buildings of different typologies: for example, innovative public buildings in their aesthetic, spatial solutions, and mass housing areas built using precast concrete panels. It is evident that the most traditional preservation strategy, conservation, is not the only option for preserving post-war concrete architecture, and more options should be considered. The first step in choosing the right strategy in each case is an appropriate assessment of the cultural significance. For this reason, an evaluation matrix for post-war concrete architecture is proposed. In one direction, an analysis of different typological groups of buildings is suggested, with the designation of ownership rights; in the other direction – the analysis of traditional value aspects such as aesthetic, technological, and relevant for modern architecture such as social, economic, and sustainability factors. By examining these parameters together, three relevant scenarios for preserving post-war concrete architecture were distinguished: conservation, renovation, and reuse, and they are revealed using examples of concrete architecture in Lithuania.Keywords: modern heritage, value aspects, typology, conservation, upgrade, reuse
Procedia PDF Downloads 14615458 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 32615457 Design and Simulation of Variable Air Volume Air Conditioning System Based on Improved Sliding Mode Control
Authors: Abbas Anser, Ahmad Irfan
Abstract:
The main purpose of the VAV (Variable Air Volume) in Heating, Ventilation, and Air Conditioning (HVAC) system is to reduce energy consumption and make the buildings comfortable for the occupants. For better performance of the air conditioning system, different control techniques have been developed. In this paper, an Improved Sliding Mode Control (ISMC), based on Power Rate Exponential Reaching Law (PRERL), has been implemented on a VAV air conditioning system. Through the proposed technique, fast response and robustness have been achieved. To verify the efficacy of ISMC, a comparison of the suggested control technique has been made with Exponential Reaching Law (ERL) based SMC. And secondly, chattering, which is unfavorable as it deteriorates the mechanical parts of the air conditioning system by the continuous movement of the mechanical parts and consequently it increases the energy loss in the air conditioning system, has been alleviated. MATLAB/SIMULINK results show the effectiveness of the utilized scheme, which ensures the enhancement of the energy efficiency of the VAV air conditioning system.Keywords: PID, SMC, HVAC, PRERL, feedback linearization, VAV, chattering
Procedia PDF Downloads 12715456 A Comparative Study of Photo and Electro-Fenton Reactions Efficiency in Degradation of Cationic Dyes Mixture
Authors: S. Bouafia Chergui, Nihal Oturan, Hussein Khalaf, Mehmet A. Oturan
Abstract:
The aim of this work was to compare the degradation of a mixture of three cationic dyes by advanced oxidation processes (electro-Fenton, photo-Fenton) in aqueous solution. These processes are based on the in situ production of hydroxyl radical, a highly strong oxidant, which allows the degradation of organic pollutants until their mineralization into CO2 and H2O. Under optimal operating conditions, the evolution of total organic carbon (TOC) and electrical energy efficiency have been investigated for the two processes.Keywords: photo-fenton, electro-fenton, energy efficiency, water treatment
Procedia PDF Downloads 51415455 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis
Authors: Saeed Karimi, Ali Behbahaninia
Abstract:
In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic
Procedia PDF Downloads 9615454 Grid Tied Photovoltaic Power on School Roof
Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong
Abstract:
To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.Keywords: optimal inclination, array azimuth, annual output
Procedia PDF Downloads 68015453 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure
Authors: Mona Shojaei
Abstract:
The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings
Procedia PDF Downloads 2015452 Analysis of the Performance of a Solar Water Heating System with Flat Collector
Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.
Abstract:
The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.Keywords: recycling materials, energy efficiency, solar collector, solar water heating system
Procedia PDF Downloads 60115451 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 25015450 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics
Authors: Qiuhua Miao, Peng Huang, Yifei Ding
Abstract:
Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.Keywords: relative regional total energy, crushing energy, axial segregation characteristics, rotary drum
Procedia PDF Downloads 9215449 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption
Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu
Abstract:
In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control
Procedia PDF Downloads 16815448 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 3415447 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk
Authors: Moses Jenkins
Abstract:
Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.Keywords: insulation, condensation, masonry, historic
Procedia PDF Downloads 17915446 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat
Authors: Ekrem Erdem, Can Tansel Tugcu
Abstract:
Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth
Procedia PDF Downloads 34815445 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming
Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi
Abstract:
Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.Keywords: Gas production, hydrate, process integration, steam reforming
Procedia PDF Downloads 18615444 Conceptual Design of Low Energy Consumption House in Khartoum, Sudan
Authors: Sawsan M. H. Domi
Abstract:
Approximately 50% of the energy used in buildings, including houses, provide environmental comfortable levels of thermal living. In Khartoum - the city under study- cooling uses the largest portion of energy and the basic idea of Low energy houses is to minimize energy consumption. Therefore, houses are designed to use natural climate strategies to provide thermal comfort. Strategies such as semi-open spaces, shading devices, small high windows and thick walls. The study aims to review these strategies and then, apply them. It aims to change house microclimate by using vegetation, green areas, and other components. A low energy house is being designed s. It will be the first low energy house in Khartoum designed to create a low-cost energy efficient building without any mechanical systems. Three different types of houses in Khartoum are examined and evaluated according to their energy loads which provides the basis for the designed house. The designed house uses passive design strategies to reduce the need for cooling. These results show that the house reduced energy cooling loads by more than 60% compared to the average of the three given types. The design house is economically viable when taking into consideration the energy prices in Sudan.Keywords: building envelope, climate, energy loads, ventilation
Procedia PDF Downloads 251