Search results for: chemical equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6277

Search results for: chemical equation

1837 Developing a Model to Objectively Assess the Culture of Individuals and Teams in Order to Effectively and Efficiently Achieve Sustainability in the Manpower

Authors: Ahmed Mohamed Elnady Mohamed Elsafty

Abstract:

This paper explains a developed applied objective model to measure the culture qualitatively and quantitatively, whether in individuals or in teams, in order to be able to use culture correctly or modify it efficiently. This model provides precise measurements and consistent interpretations by being comprehensive, updateable, and protected from being misled by imitations. Methodically, the provided model divides the culture into seven dimensions (total 43 cultural factors): First dimension is outcome-orientation which consists of five factors and should be highest in leaders. Second dimension is details-orientation which consists of eight factors and should be in highest intelligence members. Third dimension is team-orientation which consists of five factors and should be highest in instructors or coaches. Fourth dimension is change-orientation which consists of five factors and should be highest in soldiers. Fifth dimension is people-orientation which consists of eight factors and should be highest in media members. Sixth dimension is masculinity which consists of seven factors and should be highest in hard workers. Last dimension is stability which consists of seven factors and should be highest in soft workers. In this paper, the details of all cultural factors are explained. Practically, information collection about each cultural factor in the targeted person or team is essential in order to calculate the degrees of all cultural factors using the suggested equation of multiplying 'the score of factor presence' by 'the score of factor strength'. In this paper, the details of how to build each score are explained. Based on the highest degrees - to identify which cultural dimension is the prominent - choosing the tested individual or team in the supposedly right position at the right time will provide a chance to use minimal efforts to make everyone aligned to the organization’s objectives. In other words, making everyone self-motivated by setting him/her at the right source of motivation is the most effective and efficient method to achieve high levels of competency, commitment, and sustainability. Modifying a team culture can be achieved by excluding or including new members with relatively high or low degrees in specific cultural factors. For conclusion, culture is considered as the software of the human beings and it is one of the major compression factors on the managerial discretion. It represents the behaviors, attitudes, and motivations of the human resources which are vital to enhance quality and safety, expanding the market share, and defending against attacks from external environments. Thus, it is tremendously essential and useful to use such a comprehensive model to measure, use, and modify culture.

Keywords: culture dimensions, culture factors, culture measurement, cultural analysis, cultural modification, self-motivation, alignment to objectives, competency, sustainability

Procedia PDF Downloads 147
1836 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity

Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh

Abstract:

Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.

Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy

Procedia PDF Downloads 348
1835 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 351
1834 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method

Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren

Abstract:

In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.

Keywords: floating body, fluid structure interaction, MPS, particle method, waves

Procedia PDF Downloads 49
1833 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children

Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik

Abstract:

The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.

Keywords: ADHD children, instant surabi, soybean, torbangun

Procedia PDF Downloads 119
1832 Thermoplastic Polyurethane/Barium Titanate Composites

Authors: Seyfullah Madakbaş, Ferhat Şen, Memet Vezir Kahraman

Abstract:

The aim of this study was to improve thermal stability, mechanical and surface properties of thermoplastic polyurethane (TPU) with the addition of BaTiO3. The TPU/ BaTiO3 composites having various ratios of TPU and BaTiO3 were prepared. The chemical structure of the prepared composites was investigated by FT-IR. FT-IR spectra of TPU/ barium titanate composites show that they successfully were prepared. Thermal stability of the samples was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The prepared composites showed high thermal stability, and the char yield increased as barium titanate content increased. The glass transition temperatures of the composites rise with the addition of barium titanate. Mechanical properties of the samples were characterized with stress-strain test. The mechanical properties of the TPU were increased with the contribution of the contribution of the barium titanate it increased. Hydrophobicity of the samples was determined by the contact angle measurements. The contact angles have the tendency to increase the hydrophobic behavior on the surface, when barium titanate was added into TPU. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM). SEM-EDS mapping images showed that barium titanate particles were dispersed homogeneously. Finally, the obtained results prove that the prepared composites have good thermal, mechanical and surface properties and that they can be used in many applications such as the electronic devices, materials engineering and other emergent.

Keywords: barium titanate, composites, thermoplastic polyurethane, scanning electron microscopy

Procedia PDF Downloads 308
1831 Evaluation of Hancornia speciosa Gomes Lyophilization at Different Stages of Maturation

Authors: D. C. Soares, J. T. S. Santos, D. G. Costa, A. K. S. Abud, T. P. Nunes, A. V. D. Figueiredo, A. M. de Oliveira Junior

Abstract:

Mangabeira (Hancornia speciosa Gomes), a native plant in Brazil, is found growing spontaneously in various regions of the country. The high perishability of tropical fruits such as mangaba, causes it to be necessary to use technologies that promote conservation, aiming to increase the shelf life of this fruit and add value. The objective of this study was to compare the mangabas lyophilisation curves behaviours with different sizes and maturation stages. The fruits were freeze-dried for a period of approximately 45 hours at lyophilizer Liotop brand, model L -108. It has been considered large the fruits between 38 and 58 mm diameter and small, between 23 and 28 mm diameter and the two states of maturation, intermediate and mature. Large size mangabas drying curves in both states of maturation were linear behaviour at all process, while the kinetic drying curves related to small fruits, independent of maturation state, had a typical behaviour of drying, with all the well-defined steps. With these results it was noted that the time of lyophilisation was suitable for small mangabas, a fact that did not happen with the larger one. This may indicate that the large mangabas require a longer time to freeze until reaches the equilibrium level, as it happens with the small fruits, going to have constant moisture at the end of the process. For both types of fruit were analysed water activity, acidity, protein, lipid, and vitamin C before and after the process.

Keywords: freeze dryer, mangaba, conservation, chemical characteristics

Procedia PDF Downloads 270
1830 Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal

Authors: Said M. AL-Mashaikhi, El-Said I. El-Shafey, Fakhreldin O. Suliman, Saleh Al-Busafi

Abstract:

Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal.

Keywords: activated carbon, dye removal, functionalization, hydrophobic interaction, water treatment

Procedia PDF Downloads 139
1829 Role of Yeast-Based Bioadditive on Controlling Lignin Inhibition in Anaerobic Digestion Process

Authors: Ogemdi Chinwendu Anika, Anna Strzelecka, Yadira Bajón-Fernández, Raffaella Villa

Abstract:

Anaerobic digestion (AD) has been used since time in memorial to take care of organic wastes in the environment, especially for sewage and wastewater treatments. Recently, the rising demand/need to increase renewable energy from organic matter has caused the AD substrates spectrum to expand and include a wider variety of organic materials such as agricultural residues and farm manure which is annually generated at around 140 billion metric tons globally. The problem, however, is that agricultural wastes are composed of materials that are heterogeneous and too difficult to degrade -particularly lignin, that make up about 0–40% of the total lignocellulose content. This study aimed to evaluate the impact of varying concentrations of lignin on biogas yields and their subsequent response to a commercial yeast-based bioadditive in batch anaerobic digesters. The experiments were carried out in batches for a retention time of 56 days with different lignin concentrations (200 mg, 300 mg, 400 mg, 500 mg, and 600 mg) treated to different conditions to first determine the concentration of the bioadditive that was most optimal for overall process improvement and yields increase. The batch experiments were set up using 130 mL bottles with a working volume of 60mL, maintained at 38°C in an incubator shaker (150rpm). Digestate obtained from a local plant operating at mesophilic conditions was used as the starting inoculum, and commercial kraft lignin was used as feedstock. Biogas measurements were carried out using the displacement method and were corrected to standard temperature and pressure using standard gas equations. Furthermore, the modified Gompertz equation model was used to non-linearly regress the resulting data to estimate gas production potential, production rates, and the duration of lag phases as indicatives of degrees of lignin inhibition. The results showed that lignin had a strong inhibitory effect on the AD process, and the higher the lignin concentration, the more the inhibition. Also, the modelling showed that the rates of gas production were influenced by the concentrations of the lignin substrate added to the system – the higher the lignin concentrations in mg (0, 200, 300, 400, 500, and 600) the lower the respective rate of gas production in ml/gVS.day (3.3, 2.2, 2.3, 1.6, 1.3, and 1.1), although the 300 mg increased by 0.1 ml/gVS.day over that of the 200 mg. The impact of the yeast-based bioaddition on the rate of production was most significant in the 400 mg and 500 mg as the rate was improved by 0.1 ml/gVS.day and 0.2 ml/gVS.day respectively. This indicates that agricultural residues with higher lignin content may be more responsive to inhibition alleviation by yeast-based bioadditive; therefore, further study on its application to the AD of agricultural residues of high lignin content will be the next step in this research.

Keywords: anaerobic digestion, renewable energy, lignin valorisation, biogas

Procedia PDF Downloads 66
1828 Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon

Authors: Arkadiusz Urzędowski, Dorota Wójcicka-Migasiuk, Andrzej Sachajdak, Magdalena Paśnikowska-Łukaszuk

Abstract:

Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined.

Keywords: heat transfer, surface roughness, surface emissivity, radiation

Procedia PDF Downloads 68
1827 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. Nitrogen gas has been used to obtain the inert condition and to carry the gaseous pyrolysis products. The pyrolysis transformed organic materials into gaseous components, small quantities of liquid, and a solid residue (coke) containing fixed amount of carbon and ash. The composition of gas which is produced from the pyrolysis is carbon monoxide, hydrogen, methane, and other hydrocarbon compounds. The gas was condensed and the liquid containing oil/tar and water was obtained. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: coal tar, pyrolysis, gas chromatography-mass spectroscopy

Procedia PDF Downloads 307
1826 Effect of Different Processing Methods on the Quality Attributes of Pigeon Pea Used in Bread Production

Authors: B. F. Olanipekun, O. J. Oyelade, C. O. Osemobor

Abstract:

Pigeon pea is a very good source of protein and micronutrient, but it is being underutilized in Nigeria because of several constraints. This research considered the effect of different processing methods on the quality attributes of pigeon pea used in bread production towards enhancing its utility. Pigeon pea was obtained at a local market and processed into the flour using three processing methods: soaking, sprouting and roasting and were used to bake bread in different proportions. Chemical composition and sensory attributes of the breads were thereafter determined. The highest values of protein and ash contents were obtained from 20 % substitution of sprouted pigeon pea in wheat flour and may be attributable to complex biochemical changes occurring during hydration, to invariably lead to protein constituent being broken down. Hydrolytic activities of the enzymes from the sprouted sample resulted in improvement in the constituent of total protein probably due to reduction in the carbohydrate content. Sensory qualities analyses showed that bread produced with soaked and roasted pigeon pea flours at 5 and 10% inclusion, respectively were mostly accepted than other blends, and products with sprouted pigeon pea flour were least accepted. The findings of this research suggest that supplementing wheat flour with sprouted pigeon peas have more nutritional potentials. However, with sensory analysis indices, the soaked and roasted pigeon peas up to 10% are majorly accepted, and also can improve the nutritional status. Overall, this will be very beneficial to population dependent on plant protein in order to combat malnutrition problems.

Keywords: pigeon pea, processing, protein, malnutrition

Procedia PDF Downloads 222
1825 Evaluation of Oxidative Changes in Soybean Oil During Shelf-Life by Physico-Chemical Methods and Headspace-Liquid Phase Microextraction (HS-LPME) Technique

Authors: Maryam Enteshari, Kooshan Nayebzadeh, Abdorreza Mohammadi

Abstract:

In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV), and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4˚C between p-AV and TBA (r2=0.99).

Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil

Procedia PDF Downloads 376
1824 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco

Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi

Abstract:

In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.

Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco

Procedia PDF Downloads 436
1823 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 187
1822 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 233
1821 Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System

Authors: Tshilenge Kabongo, John Kabuba

Abstract:

The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.

Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment

Procedia PDF Downloads 110
1820 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 449
1819 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 97
1818 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution

Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou

Abstract:

Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.

Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical

Procedia PDF Downloads 386
1817 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 237
1816 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 44
1815 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 276
1814 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study

Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi

Abstract:

Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.

Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant

Procedia PDF Downloads 91
1813 Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria

Authors: Akpokiere Ugbede Roseline

Abstract:

Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry.

Keywords: instructional strategy, practical chemistry, learning outcomes, pre-service teachers

Procedia PDF Downloads 81
1812 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses

Authors: Yuqing Zou, Chunrui Zou, Yichong Cao

Abstract:

Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.

Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement

Procedia PDF Downloads 77
1811 Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D'Ivoire

Authors: G. Dan Chépo, L. Ban-Koffi, N. Kouassi Kouakou, M. Dje Kouakou, J. Nemlin, A. Sahore Drogba, L. Kouame Patrice

Abstract:

Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam.

Keywords: Gnagnan, maturity stage, chemical composition, chromatography thin layer, phytochemical sorting

Procedia PDF Downloads 470
1810 Discovering New Organic Materials through Computational Methods

Authors: Lucas Viani, Benedetta Mennucci, Soo Young Park, Johannes Gierschner

Abstract:

Organic semiconductors have attracted the attention of the scientific community in the past decades due to their unique physicochemical properties, allowing new designs and alternative device fabrication methods. Until today, organic electronic devices are largely based on conjugated polymers mainly due to their easy processability. In the recent years, due to moderate ET and CT efficiencies and the ill-defined nature of polymeric systems the focus has been shifting to small conjugated molecules with well-defined chemical structure, easier control of intermolecular packing, and enhanced CT and ET properties. It has led to the synthesis of new small molecules, followed by the growth of their crystalline structure and ultimately by the device preparation. This workflow is commonly followed without a clear knowledge of the ET and CT properties related mainly to the macroscopic systems, which may lead to financial and time losses, since not all materials will deliver the properties and efficiencies demanded by the current standards. In this work, we present a theoretical workflow designed to predict the key properties of ET of these new materials prior synthesis, thus speeding up the discovery of new promising materials. It is based on quantum mechanical, hybrid, and classical methodologies, starting from a single molecule structure, finishing with the prediction of its packing structure, and prediction of properties of interest such as static and averaged excitonic couplings, and exciton diffusion length.

Keywords: organic semiconductor, organic crystals, energy transport, excitonic couplings

Procedia PDF Downloads 234
1809 Quality Characteristics of Cured Dried Camel Meat Formulated with Different Medicinal Plants as Natural Preservatives

Authors: H. S. Aljabeili, E. A. Abd El-Hady, M. M. Abd El-Razik, M. Abd Elgadir

Abstract:

The aim of the study is determining the quality characteristics of produced curing and dried camel meat contained some medicinal plants of thyme, rosemary, clove and ginger as natural preservatives. Camel meat samples were sliced and divided into five batches, one batch recorded as control sample was treated by the curing mixture (2.5%) contained the following ingredients: black pepper 1 gm, cumin 0.4 gm, spices mixture 0.5 gm, dried onion 3 gm, dried garlic 0.5 gm and salt 2 gm. To evaluate the effect of different natural preservatives sources of thyme, rosemary, clove and ginger, 3.0% of the aforementioned natural preservatives was mixed with the aforementioned curing mixture and used for curing the four batches of sliced camel meat. After curing process, cured sliced camel meat (control and treated with the natural preservatives) were conducting to drying process at 35 ± 3 °C for 36 h in a drying cabinet. The quality characteristics of prepared dried camel meat were evaluated such as chemical composition, microbiological characteristics and sensory characteristics. Based on the microbiological and sensory characteristics, it could be suggested that the selected medicinal plants specially thyme and rosemary could be used as natural preservatives for preparing semi dry camel meat without negative effects.

Keywords: curing, dried camel meat, medicinal plants, natural preservatives, quality characteristics

Procedia PDF Downloads 202
1808 Palatability of a Garlic and Citrus Extract Feed Supplement to Enhance Energy Retention and Methane Production in Ruminants in vivo

Authors: Michael Graz, Andrew Shearer, Gareth Evans

Abstract:

Manipulation of rumen bacteria is receiving increasing attention as a way of controlling greenhouse gas (GHG) emissions that are generated by the agricultural sector. Feed supplementation in particular is one of the ways in which this drive is being addressed, in particular with reference to livestock-generated GHG emissions. A blend of naturally occurring chemical extracts obtained from garlic and bitter orange extracts has been identified as a natural, sustainable and non-antibiotic based way of reducing methane production by ruminant livestock. In the current study, the acceptability and impact of this blend of natural extracts on feed rations of beef cattle was trialed in vivo on a commercial farm in Europe. Initial findings have demonstrated acceptable palatability, with all animals accepting the feed supplement into their ration both when it was mixed into the total daily ration and when used as a part of their high energy rations. Measurement of the impact of this feed supplement on productivity weight gain and milk quality is ongoing. In conclusion, this field study confirmed the palatability of the combination of garlic and citrus extracts and hence pointed to possibility of the extract blend to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.

Keywords: citrus, garlic, methane reduction, palatability, ruminants

Procedia PDF Downloads 377