Search results for: functional composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4854

Search results for: functional composite

534 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 209
533 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey

Authors: Bilge Ozel

Abstract:

Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.

Keywords: resilience, urban dynamics, urban resilience, urban transformation

Procedia PDF Downloads 265
532 Biodegradation of Phenazine-1-Carboxylic Acid by Rhodanobacter sp. PCA2 Proceeds via Decarboxylation and Cleavage of Nitrogen-Containing Ring

Authors: Miaomiao Zhang, Sabrina Beckmann, Haluk Ertan, Rocky Chau, Mike Manefield

Abstract:

Phenazines are a large class of nitrogen-containing aromatic heterocyclic compounds, which are almost exclusively produced by bacteria from diverse genera including Pseudomonas and Streptomyces. Phenazine-1-carboxylic acid (PCA) as one of 'core' phenazines are converted from chorismic acid before modified to other phenazine derivatives in different cells. Phenazines have attracted enormous interests because of their multiple roles on biocontrol, bacterial interaction, biofilm formation and fitness of their producers. However, in spite of ecological importance, degradation as a part of phenazines’ fate only have extremely limited attention now. Here, to isolate PCA-degrading bacteria, 200 mg L-1 PCA was supplied as sole carbon, nitrogen and energy source in minimal mineral medium. Quantitative PCR and Reverse-transcript PCR were employed to study abundance and activity of functional gene MFORT 16269 in PCA degradation, respectively. Intermediates and products of PCA degradation were identified with LC-MS/MS. After enrichment and isolation, a PCA-degrading strain was selected from soil and was designated as Rhodanobacter sp. PCA2 based on full 16S rRNA sequencing. As determined by HPLC, strain PCA2 consumed 200 mg L-1 (836 µM) PCA at a rate of 17.4 µM h-1, accompanying with significant cells yield from 1.92 × 105 to 3.11 × 106 cells per mL. Strain PCA2 was capable of degrading other phenazines as well, including phenazine (4.27 µM h-1), pyocyanin (2.72 µM h-1), neutral red (1.30 µM h-1) and 1-hydroxyphenazine (0.55 µM h-1). Moreover, during the incubation, transcript copies of MFORT 16269 gene increased significantly from 2.13 × 106 to 8.82 × 107 copies mL-1, which was 2.77 times faster than that of the corresponding gene copy number (2.20 × 106 to 3.32 × 107 copies mL-1), indicating that MFORT 16269 gene was activated and played roles on PCA degradation. As analyzed by LC-MS/MS, decarboxylation from the ring structure was determined as the first step of PCA degradation, followed by cleavage of nitrogen-containing ring by dioxygenase which catalyzed phenazine to nitrosobenzene. Subsequently, phenylhydroxylamine was detected after incubation for two days and was then transferred to aniline and catechol. Additionally, genomic and proteomic analyses were also carried out for strain PCA2. Overall, the findings presented here showed that a newly isolated strain Rhodanobacter sp. PCA2 was capable of degrading phenazines through decarboxylation and cleavage of nitrogen-containing ring, during which MFORT 16269 gene was activated and played important roles.

Keywords: decarboxylation, MFORT16269 gene, phenazine-1-carboxylic acid degradation, Rhodanobacter sp. PCA2

Procedia PDF Downloads 223
531 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
530 Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension

Authors: Laura M. Hovsepyan, Gayane S. Ghazaryan, Hasmik V. Zanginyan

Abstract:

Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes.

Keywords: hypertension (HD), oxidative modification of proteins (OMP), nitric oxide (NO), oxidative stress

Procedia PDF Downloads 108
529 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 237
528 Effects of Soaking of Maize on the Viscosity of Masa and Tortilla Physical Properties at Different Nixtamalization Times

Authors: Jorge Martínez-Rodríguez, Esther Pérez-Carrillo, Diana Laura Anchondo Álvarez, Julia Lucía Leal Villarreal, Mariana Juárez Dominguez, Luisa Fernanda Torres Hernández, Daniela Salinas Morales, Erick Heredia-Olea

Abstract:

Maize tortillas are a staple food in Mexico which are mostly made by nixtamalization, which includes the cooking and steeping of maize kernels in alkaline conditions. The cooking step in nixtamalization demands a lot of energy and also generates nejayote, a water pollutant, at the end of the process. The aim of this study was to reduce the cooking time by adding a maize soaking step before nixtamalization while maintaining the quality properties of masa and tortillas. Maize kernels were soaked for 36 h to increase moisture up to 36%. Then, the effect of different cooking times (0, 5, 10, 15, 20, 20, 25, 30, 35, 45-control and 50 minutes) was evaluated on viscosity profile (RVA) of masa to select the treatments with a profile similar or equal to control. All treatments were left steeping overnight and had the same milling conditions. Treatments selected were 20- and 25-min cooking times which had similar values for pasting temperature (79.23°C and 80.23°C), Maximum Viscosity (105.88 Cp and 96.25 Cp) and Final Viscosity (188.5 Cp and 174 Cp) to those of 45 min-control (77.65 °C, 110.08 Cp, and 186.70 Cp, respectively). Afterward, tortillas were produced with the chosen treatments (20 and 25 min) and for control, then were analyzed for texture, damage starch, colorimetry, thickness, and average diameter. Colorimetric analysis of tortillas only showed significant differences for yellow/blue coordinates (b* parameter) at 20 min (0.885), unlike the 25-minute treatment (1.122). Luminosity (L*) and red/green coordinates (a*) showed no significant differences from treatments with respect control (69.912 and 1.072, respectively); however, 25 minutes was closer in both parameters (73.390 and 1.122) than 20 minutes (74.08 and 0.884). For the color difference, (E), the 25 min value (3.84) was the most similar to the control. However, for tortilla thickness and diameter, the 20-minute with 1.57 mm and 13.12 cm respectively was closer to those of the control (1.69 mm and 13.86 cm) although smaller to it. On the other hand, the 25 min treatment tortilla was smaller than both 20 min and control with 1.51 mm thickness and 13.590 cm diameter. According to texture analyses, there was no difference in terms of stretchability (8.803-10.308 gf) and distance for the break (95.70-126.46 mm) among all treatments. However, for the breaking point, all treatments (317.1 gf and 276.5 gf for 25 and 20- min treatment, respectively) were significantly different from the control tortilla (392.2 gf). Results suggest that by adding a soaking step and reducing cooking time by 25 minutes, masa and tortillas obtained had similar functional and textural properties to the traditional nixtamalization process.

Keywords: tortilla, nixtamalization, corn, lime cooking, RVA, colorimetry, texture, masa rheology

Procedia PDF Downloads 177
527 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 123
526 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 227
525 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 67
524 Use of Low-Cost Hydrated Hydrogen Sulphate-Based Protic Ionic Liquids for Extraction of Cellulose-Rich Materials from Common Wheat (Triticum Aestivum) Straw

Authors: Chris Miskelly, Eoin Cunningham, Beatrice Smyth, John. D. Holbrey, Gosia Swadzba-Kwasny, Emily L. Byrne, Yoan Delavoux, Mantian Li.

Abstract:

Recently, the use of ionic liquids (ILs) for the preparation of lignocellulose derived cellulosic materials as alternatives to petrochemical feedstocks has been the focus of considerable research interest. While the technical viability of IL-based lignocellulose treatment methodologies has been well established, the high cost of reagents inhibits commercial feasibility. This work aimed to assess the technoeconomic viability of the preparation of cellulose rich materials (CRMs) using protic ionic liquids (PILs) synthesized from low cost alkylamines and sulphuric acid. For this purpose, the tertiary alkylamines, triethylamine, and dimethylbutylamine were selected. Bulk scale production cost of the synthesized PILs, triethylammonium hydrogen sulphate and dimetheylbutylammonium hydrogen sulphate, was reported as $0.78 kg-1 to $1.24 kg-1. CRMs were prepared through the treatment of common wheat (Triticum aestivum) straw with these PILs. By controlling treatment parameters, CRMs with a cellulose content of ≥ 80 wt% were prepared. This was achieved using a T. aestivum straw to PIL loading ratio of 1:15 w/w, a treatment duration of 180 minutes, and ethanol as a cellulose antisolvent. Infrared spectra data and decreased onset degradation temperature of CRMs (ΔTONSET ~ 70 °C) suggested the formation of cellulose sulphate esters during treatment. Chemical derivatisation can aid the dispersion of prepared CRMs in non-polar polymer/ composite matrices, but act as a barrier to thermal processing at temperatures above 150 °C. It was also shown that treatment increased the crystallinity of CRMs (ΔCrI ~ 40 %) without altering the native crystalline structure or crystallite size (~ 2.6 nm) of cellulose; peaks associated with the cellulose I crystalline planes (110), (200), and (004) were observed at Bragg angles 16.0 °, 22.5 ° and 35.0 ° respectively. This highlighted the inability of assessed PILs to dissolve crystalline cellulose and was attributed to the high acidity (pKa ~ - 1.92 to - 6.42) of sulphuric acid derived anions. Electron micrographs revealed that the stratified multilayer tissue structure of untreated T. aestivum straw was significantly modified during treatment. T. aestivum straw particles were disassembled during treatment, with prepared CRMs adopting a golden-brown film-like appearance. This work demonstrated the degradation of non-cellulosic fractions of lignocellulose without dissolution of cellulose. It is the first to report on the derivatisation of cellulose during treatment with protic hydrogen sulphate ionic liquids, and the potential implications of this with reference to biopolymer feedstock preparation.

Keywords: cellulose, extraction, protic ionic liquids, esterification, thermal stability, waste valorisation, biopolymer feedstock

Procedia PDF Downloads 37
523 Evolution of Rock-Cut Caves of Dhamnar at Dhamnar, MP

Authors: Abhishek Ranka

Abstract:

Rock-cut Architecture is a manifestation of human endurance in constructing magnificent structures by sculpting and cutting entire hills. Cave Architecture in India form an important part of rock-cut development and is among the most prolific examples of rock-cut architecture in the world. There are more than 1500 rock-cut caves in various regions of India. Among them mostly are located in western India, more particularly in the state of Maharashtra. Some of the rock-cut caves are located in the central region of India, which is presently known as Malawa (Madhya Pradesh). The region is dominated by the vidhyachal hill ranges toward the west, dotted with the coarse laterite rock. Dhamnar Caves have been excavated in the central region of Mandsaur Dist. With a combination of shared sacred faiths. The earliest rock-cut activity began in the north, in Bihar, where caves were excavated in the Barabar and the Nagarjuni hills during the Mauryan period (3rd century BCE). The rock-cut activity then shifts to the central part of India in Madhya Pradesh, where the caves at Dhamnar, Bagh, Udayagiri, Poldungar, etc. excavated between 3rdto 9ᵗʰ CE. The rock-cut excavation continued to flourish in Madhya Pradesh till 10ᵗʰ century CE, simultaneously with monolithic Hindu temples. Dhamnar caves fall into four architectural typologies: the Lena caves, Chaitya caves, Viharas & Lena-Chaityagriha caves. The Buddhist rock-cutting activity in central India is divisible into two phases. In the first phase (2ndBCE-3rd CE), the Buddha image is conspicuously absent. After a lapse of about three centuries, activity begins again, and the Buddha images this time are carved. The former group belongs to the Hinayana (Lesser Vehicle) phase and the latter to the Mahayana (Greater Vehicle). Dhamnar caves has an elaborate facades, pillar capitals, and many more creative sculptures in various postures. These caves were excavated against the background of invigorating trade activities and varied socio-religious or Socio Cultural contexts. These caves also highlights the wealthy and varied patronage provided by the dynasties of the past. This paper speaks about the appraisal of the rock cut mechanisms, design strategies, and approaches while promoting a scope for further research in conservation practices. Rock-cut sites, with their physical setting and various functional spaces as a sustainable habitat for centuries, has a heritage footprint with a researchquotient.

Keywords: rock-cut architecture, buddhism, hinduism, Iconography, and architectural typologies, Jainism

Procedia PDF Downloads 153
522 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 74
521 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 204
520 Community Observatory for Territorial Information Control and Management

Authors: A. Olivi, P. Reyes Cabrera

Abstract:

Ageing and urbanization are two of the main trends that characterize the twenty-first century. Its trending is especially accelerated in the emerging countries of Asia and Latin America. Chile is one of the countries in the Latin American region, where the demographic transition to ageing is becoming increasingly visible. The challenges that the new demographic scenario poses to urban administrators call for searching innovative solutions to maximize the functional and psycho-social benefits derived from the relationship between older people and the environment in which they live. Although mobility is central to people's everyday practices and social relationships, it is not distributed equitably. On the contrary, it can be considered another factor of inequality in our cities. Older people are a particularly sensitive and vulnerable group to mobility. In this context, based on the ageing in place strategy and following the social innovation approach within a spatial context, the "Community Observatory of Territorial Information Control and Management" project aims at the collective search and validation of solutions for the satisfaction of mobility and accessibility specific needs of urban aged people. Specifically, the Observatory intends to: i) promote the direct participation of the aged population in order to generate relevant information on the territorial situation and the satisfaction of the mobility needs of this group; ii) co-create dynamic and efficient mechanisms for the reporting and updating of territorial information; iii) increase the capacity of the local administration to plan and manage solutions to environmental problems at the neighborhood scale. Based on a participatory mapping methodology and on the application of digital technology, the Observatory designed and developed, together with aged people, a crowdsourcing platform for smartphones, called DIMEapp, for reporting environmental problems affecting mobility and accessibility. DIMEapp has been tested at a prototype level in two neighborhoods of the city of Valparaiso. The results achieved in the testing phase have shown high potential in order to i) contribute to establishing coordination mechanisms with the local government and the local community; ii) improve a local governance system that guides and regulates the allocation of goods and services destined to solve those problems.

Keywords: accessibility, ageing, city, digital technology, local governance

Procedia PDF Downloads 131
519 Interventions for Children with Autism Using Interactive Technologies

Authors: Maria Hopkins, Sarah Koch, Fred Biasini

Abstract:

Autism is lifelong disorder that affects one out of every 110 Americans. The deficits that accompany Autism Spectrum Disorders (ASD), such as abnormal behaviors and social incompetence, often make it extremely difficult for these individuals to gain functional independence from caregivers. These long-term implications necessitate an immediate effort to improve social skills among children with an ASD. Any technology that could teach individuals with ASD necessary social skills would not only be invaluable for the individuals affected, but could also effect a massive saving to society in treatment programs. The overall purpose of the first study was to develop, implement, and evaluate an avatar tutor for social skills training in children with ASD. “Face Say” was developed as a colorful computer program that contains several different activities designed to teach children specific social skills, such as eye gaze, joint attention, and facial recognition. The children with ASD were asked to attend to FaceSay or a control painting computer game for six weeks. Children with ASD who received the training had an increase in emotion recognition, F(1, 48) = 23.04, p < 0.001 (adjusted Ms 8.70 and 6.79, respectively) compared to the control group. In addition, children who received the FaceSay training had higher post-test scored in facial recognition, F(1, 48) = 5.09, p < 0.05 (adjusted Ms: 38.11 and 33.37, respectively) compared to controls. The findings provide information about the benefits of computer-based training for children with ASD. Recent research suggests the value of also using socially assistive robots with children who have an ASD. Researchers investigating robots as tools for therapy in ASD have reported increased engagement, increased levels of attention, and novel social behaviors when robots are part of the social interaction. The overall goal of the second study was to develop a social robot designed to teach children specific social skills such as emotion recognition. The robot is approachable, with both an animal-like appearance and features of a human face (i.e., eyes, eyebrows, mouth). The feasibility of the robot is being investigated in children ages 7-12 to explore whether the social robot is capable of forming different facial expressions to accurately display emotions similar to those observed in the human face. The findings of this study will be used to create a potentially effective and cost efficient therapy for improving the cognitive-emotional skills of children with autism. Implications and study findings using the robot as an intervention tool will be discussed.

Keywords: autism, intervention, technology, emotions

Procedia PDF Downloads 381
518 Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs

Authors: María Cárdenas Gaudry, Gonzalo Ramces Fano Miranda

Abstract:

Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants.

Keywords: prickly pear powder, tara gum, nature-based solutions, aluminum sulfate, jar test, turbidity, coagulation, flocculation

Procedia PDF Downloads 108
517 Safeguarding the Cloud: The Crucial Role of Technical Project Managers in Security Management for Cloud Environments

Authors: Samuel Owoade, Zainab Idowu, Idris Ajibade, Abel Uzoka

Abstract:

Cloud computing adoption continues to soar, with 83% of enterprise workloads estimated to be in the cloud by 2022. However, this rapid migration raises security concerns, needing strong security management solutions to safeguard sensitive data and essential applications. This paper investigates the critical role of technical project managers in orchestrating security management initiatives for cloud environments, evaluating their responsibilities, challenges, and best practices for assuring the resilience and integrity of cloud infrastructures. Drawing from a comprehensive review of industry reports and interviews with cloud security experts, this research highlights the multifaceted landscape of security management in cloud environments. Despite the rapid adoption of cloud services, only 25% of organizations have matured their cloud security practices, indicating a pressing need for effective management strategies. This paper proposes a strategy framework adapted to the demands of technical project managers, outlining the important components of effective cloud security management. Notably, 76% of firms identify misconfiguration as a major source of cloud security incidents, underlining the significance of proactive risk assessment and constant monitoring. Furthermore, the study emphasizes the importance of technical project managers in facilitating cross-functional collaboration, bridging the gap between cybersecurity professionals, cloud architects, compliance officers, and IT operations teams. With 68% of firms seeing difficulties integrating security policies into their cloud systems, effective communication and collaboration are critical to success. Case studies from industry leaders illustrate the practical use of security management projects in cloud settings. These examples demonstrate the importance of technical project managers in using their expertise to address obstacles and generate meaningful outcomes, with 92% of firms reporting improved security practices after implementing proactive security management tactics. In conclusion, this research underscores the critical role of technical project managers in safeguarding cloud environments against evolving threats. By embracing their role as guardians of the cloud realm, project managers can mitigate risks, optimize resource utilization, and uphold the trust and integrity of cloud infrastructures in an era of digital transformation.

Keywords: cloud security, security management, technical project management, cybersecurity, cloud infrastructure, risk management, compliance

Procedia PDF Downloads 51
516 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 185
515 Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

Authors: Aasaithambi Kalaiselvi, Michael Gabriel Paulraj, Ekambaram Nakkeeran

Abstract:

Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest.

Keywords: Cinnamomum verum, niosomes, entrapment efficiency, bactericidal and fungicidal, mosquito larvicidal activity

Procedia PDF Downloads 164
514 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 138
513 Using Genre Analysis to Teach Contract Negotiation Discourse Practices

Authors: Anthony Townley

Abstract:

Contract negotiation is fundamental to commercial law practice. For this study, genre and discourse analytical methodology was used to examine the legal negotiation of a Merger & Acquisition (M&A) deal undertaken by legal and business professionals in English across different jurisdictions in Europe. While some of the most delicate negotiations involved in this process were carried on face-to-face or over the telephone, these were generally progressed more systematically – and on the record – in the form of emails, email attachments, and as comments and amendments recorded in successive ‘marked-up’ versions of the contracts under negotiation. This large corpus of textual data was originally obtained by the author, in 2012, for the purpose of doctoral research. For this study, the analysis is particularly concerned with the use of emails and covering letters to exchange legal advice about the negotiations. These two genres help to stabilize and progress the negotiation process and account for negotiation activities. Swalesian analysis of functional Moves and Steps was able to identify structural similarities and differences between these text types and to identify certain salient discursive features within them. The analytical findings also indicate how particular linguistic strategies are more appropriately and more effectively associated with one legal genre rather than another. The concept of intertextuality is an important dimension of contract negotiation discourse and this study also examined how the discursive relationships between the different texts influence the way that texts are constructed. In terms of materials development, the research findings can contribute to more authentic English for Legal & Business Purposes pedagogies for students and novice lawyers and business professionals. The findings can first be used to design discursive maps that provide learners with a coherent account of the intertextual nature of the contract negotiation process. These discursive maps can then function as a framework in which to present detailed findings about the textual and structural features of the text types by applying the Swalesian genre analysis. Based on this acquired knowledge of the textual nature of contract negotiation, the authentic discourse materials can then be used to provide learners with practical opportunities to role-play negotiation activities and experience professional ways of thinking and using language in preparation for the written discourse challenges they will face in this important area of legal and business practice.

Keywords: English for legal and business purposes, discourse analysis, genre analysis, intertextuality, pedagogical materials

Procedia PDF Downloads 149
512 Architectural Robotics in Micro Living Spaces: An Approach to Enhancing Wellbeing

Authors: Timothy Antoniuk

Abstract:

This paper will demonstrate why the most successful and livable cities in the future will require multi-disciplinary designers to develop a deep understanding of peoples’ changing lifestyles, and why new generations of deeply integrated products, services and experiences need to be created. Disseminating research from the UNEP Creative Economy Reports and through a variety of other consumption and economic-based statistics, a compelling argument will be made that it is peoples’ living spaces that offer the easiest and most significant affordances for inducing positive changes to their wellbeing, and to a city’s economic and environmental prosperity. This idea, that leveraging happiness, wellbeing and prosperity through creating new concepts and typologies of ‘home’, puts people and their needs, wants, desires, aspirations and lifestyles at the beginning of the design process, not at the end, as so often occurs with current-day multi-unit housing construction. As an important part of the creative-reflective and statistical comparisons that are necessary for this on-going body of research and practice, Professor Antoniuk created the Micro Habitation Lab (mHabLab) in 2016. By focusing on testing the functional and economic feasibility of activating small spaces with different types of architectural robotics, a variety of movable, expandable and interactive objects have been hybridized and integrated into the architectural structure of the Lab. Allowing the team to test new ideas continually and accumulate thousands of points of feedback from everyday consumers, a series of on-going open houses is allowing the public-at-large to see, physically engage with, and give feedback on the items they find most and least valuable. This iterative approach of testing has exposed two key findings: Firstly, that there is a clear opportunity to improve the macro and micro functionality of small living spaces; and secondly, that allowing people to physically alter smaller elements of their living space lessens feelings of frustration and enhances feelings of pride and a deeper perception of “home”. Equally interesting to these findings is a grouping of new research questions that are being exposed which relate to: The duality of space; how people can be in two living spaces at one time; and how small living spaces is moving the Extended Home into the public realm.

Keywords: architectural robotics, extended home, interactivity, micro living spaces

Procedia PDF Downloads 173
511 Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines

Authors: Adamantini Loukodimou, David Weston, Shiladitya Paul

Abstract:

Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed.

Keywords: corrosion mitigation, microcapsules, offshore wind turbines, self-healing

Procedia PDF Downloads 115
510 Fuzzy Expert Approach for Risk Mitigation on Functional Urban Areas Affected by Anthropogenic Ground Movements

Authors: Agnieszka A. Malinowska, R. Hejmanowski

Abstract:

A number of European cities are strongly affected by ground movements caused by anthropogenic activities or post-anthropogenic metamorphosis. Those are mainly water pumping, current mining operation, the collapse of post-mining underground voids or mining-induced earthquakes. These activities lead to large and small-scale ground displacements and a ground ruptures. The ground movements occurring in urban areas could considerably affect stability and safety of structures and infrastructures. The complexity of the ground deformation phenomenon in relation to the structures and infrastructures vulnerability leads to considerable constraints in assessing the threat of those objects. However, the increase of access to the free software and satellite data could pave the way for developing new methods and strategies for environmental risk mitigation and management. Open source geographical information systems (OS GIS), may support data integration, management, and risk analysis. Lately, developed methods based on fuzzy logic and experts methods for buildings and infrastructure damage risk assessment could be integrated into OS GIS. Those methods were verified base on back analysis proving their accuracy. Moreover, those methods could be supported by ground displacement observation. Based on freely available data from European Space Agency and free software, ground deformation could be estimated. The main innovation presented in the paper is the application of open source software (OS GIS) for integration developed models and assessment of the threat of urban areas. Those approaches will be reinforced by analysis of ground movement based on free satellite data. Those data would support the verification of ground movement prediction models. Moreover, satellite data will enable our mapping of ground deformation in urbanized areas. Developed models and methods have been implemented in one of the urban areas hazarded by underground mining activity. Vulnerability maps supported by satellite ground movement observation would mitigate the hazards of land displacements in urban areas close to mines.

Keywords: fuzzy logic, open source geographic information science (OS GIS), risk assessment on urbanized areas, satellite interferometry (InSAR)

Procedia PDF Downloads 159
509 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude

Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar

Abstract:

High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.

Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene

Procedia PDF Downloads 131
508 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin

Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa

Abstract:

Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.

Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®

Procedia PDF Downloads 131
507 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 240
506 Anatomical Investigation of Superficial Fascia Relationships with the Skin and Underlying Tissue in the Greyhound Rump, Thigh, and Crus

Authors: Oday A. Al-Juhaishi, Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies

Abstract:

The functional anatomy of the fascia in the greyhound is still poorly understood, and incompletely described. The basic knowledge of fascia stems mainly from anatomical, histological and ultrastructural analyses. In this study, twelve specimens of hindlimbs from six fresh greyhound cadavers (3 male, 3 female) were used to examine the topographical relationships of the superficial fascia with the skin and underlying tissue. The first incision was made along the dorsal midline from the level of the thoracolumbar junction caudally to the level of the mid sacrum. The second incision was begun at the level of the first incision and extended along the midline of the lateral aspect of the hindlimb distally, to just proximal to the tarsus, and, the skin margins carefully separated to observe connective tissue links between the skin and superficial fascia, attachment points of the fascia and the relationships of the fascia with blood vessels that supply the skin. A digital camera was used to record the anatomical features as they were revealed. The dissections identified fibrous septa connecting the skin with the superficial fascia and deep fascia in specific areas. The presence of the adipose tissue was found to be very rare within the superficial fascia in these specimens. On the extensor aspects of some joints, a fusion between the superficial fascia and deep fascia was observed. This fusion created a subcutaneous bursa in the following areas: a prepatellar bursa of the stifle, a tarsal bursa caudal to the calcaneus bone, and an ischiatic bursa caudal to the ischiatic tuberosity. The evaluation of blood vessels showed that the perforating vessels passed through fibrous septa in a perpendicular direction to supply the skin, with the largest branch noted in the gluteal area. The attachment points between the superficial fascia and skin were mainly found in the region of the flexor aspect of the joints, such as caudal to the stifle joint. The numerous fibrous septa between the superficial fascia and skin that have been identified in some areas, may create support for the blood vessels that penetrate fascia and into the skin, while allowing for movement between the tissue planes. The subcutaneous bursae between the skin and the superficial fascia where it is fused with the deep fascia may be useful to decrease friction between moving areas. The adhesion points may be related to the integrity and loading of the skin. The attachment points fix the skin and appear to divide the hindlimb into anatomical compartments.

Keywords: attachment points, fibrous septa, greyhound, subcutaneous bursa, superficial fascia

Procedia PDF Downloads 359
505 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 86