Search results for: financial sustainability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5118

Search results for: financial sustainability

858 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments

Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan

Abstract:

Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planning

Keywords: clean fuels, hydrodynamics, coastal engineering, impact assessments

Procedia PDF Downloads 70
857 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 66
856 The Post-Crisis Expansion of European Central Bank Powers: Understanding the Legitimate Boundaries of the ECB's Supervisory Independence and Accountability

Authors: Jakub Gren

Abstract:

The recent transfer of banking supervision to the ECB has expanded its influence as of a non-majoritarian and technocratic policy-shaper in EU supervisory policies. To fulfil the main policy objectives of the Single Supervisory Mechanism, the ECB has been tasked with building a single supervisory approach to supervised banks across the euro area and is now exclusively responsible for direct supervision of the largest ‘significant’ euro area banks and the oversight of the remaining ‘less significant’ banks. This enhanced supranational position of the ECB significantly alters the EU institutional order and creates powerful incentives to actively pursue integrationist agenda by the ECB. However, this drastic shift has a little impact upon adapting the ECB’s new supervisory mandate to the requirements of democratic legitimacy. Whereas the ECB’s strong pre-crisis independence and limited accountability could be reconciled with democratic principles through a clearly articulated price stability mandate, independence and limited accountability in the context of a more complex supervisory mandate is problematic. Hence, in order to ensure the democratic legitimacy of the ECB/SSM’s supervisory policies, the ECB’s supervisory mandate requires both a lower scope of independence and higher accountability requirements. To address this situation, organizational separation (“Chinese Wall”) between the ECB monetary and supervisory arms was introduced. This separation includes different reporting lines and the relocation of the ECB’s monetary function to a new building complex while leaving its supervisory function at the Euro-tower (“Two Towers”). This paper argues that these measures are not sufficient to establish proper checks and balances on the ECB’s powers to pursue euro zone’s wide supervisory policies. As a remedy, this contribution suggests that the ECB’s Treaties-embedded independence, as set out by art. 130 TFEU, designed to carry out its monetary function shall not be fully applicable to its supervisory function. Indeed functional and conditional reading of this provision to ECB supervisory function could enhance the legitimacy of future ECB’s supervisory action.

Keywords: accountability and transparency, democratic governance, financial management, rule of law

Procedia PDF Downloads 207
855 Walking the Tightrope: Balancing Project Governance, Complexity, and Servant Leadership for Megaproject Success

Authors: Muhammad Shoaib Iqbal, Shih Ping Ho

Abstract:

Megaprojects are large-scale, complex ventures with significant financial investments, numerous stakeholders, and extended timelines, requiring meticulous management for successful completion. This study explores the interplay between project governance, project complexity, and servant leadership and their combined effects on project success, specifically within the context of Pakistani megaprojects. The primary objectives are to examine the direct impact of project governance on project success, understand the negative influence of project complexity, assess the positive role of servant leadership, explore the moderating effect of servant leadership on the relationship between governance and success, and investigate how servant leadership mitigates the adverse effects of complexity. Using a quantitative approach, survey data were collected from project managers and team members involved in Pakistani megaprojects. Using a Comprehensive empirical model, 257 Valid responses were analyzed. Multiple regression analysis tested the hypothesized relationships and interaction effects using PLS-SEM. Findings reveal that project governance significantly enhances project success, emphasizing the need for robust governance structures. Conversely, project complexity negatively impacts success, highlighting the challenges of managing complex projects. Servant leadership significantly boosts project success by prioritizing team support and empowerment. Although the interaction between governance and servant leadership is not significant, suggesting no significant change in project success, servant leadership significantly mitigates the negative effects of project complexity, enhancing team resilience and adaptability. These results underscore the necessity for a balanced approach integrating strong governance with flexible, supportive leadership. The study offers valuable insights for practitioners, recommending adaptive governance frameworks and promoting servant leadership to improve the management and success rates of megaprojects. This research contributes to the broader understanding of effective project management practices in complex environments.

Keywords: project governance, project complexity, servant leadership, project success, megaprojects, Pakistan

Procedia PDF Downloads 39
854 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 624
853 Public Preferences and Willingness to Pay for Social Health Insurance in Iran: A Discrete Choice Experiment

Authors: Mohammad Ranjbar, Mohammad Bazyar, Blake Angell, Thomas Lung, Yibeltal Assefa

Abstract:

Background: Current health insurance programs in Iran suffer from low enrolment and are not sufficient to attain the country to universal health coverage (UHC). We hypothesize that improving the enrollment rate and moving towards a more sustainable UHC can be achieved by improving the benefits package and providing new incentives. The objective of this study is to assess public preferences and willingness to pay (WTP) for social health insurance (SHI) in Iran. Methods: A discrete choice experiment (DCE) was conducted in 2021, using a self-administered questionnaire on 500 participants to estimate WTP and determine individual preferences for the SHI in Yazd, Iran. Respondents were presented with an eight-choice set and asked to select their preferred one. In each choice set, scenarios were described by eight attributes with varying levels. The conditional logit regression model was used to analyze the participants' preferences. Willingness to pay for each attribute was also calculated. Results: Most included attributes were significant predictors of the choice of a health insurance package. The maximum coverage of hospitalization costs in the private sector, ancillary services such as glasses, canes, etc., as well as coverage for hospitalization costs in the public sector and drug costs, were the most important determining factors for this choice. Coverage of preventive dental care did not significantly influence respondent choices. Estimating WTP showed that individuals are willing to pay more for higher financial protection, particularly against private sector costs; the WTP to increase the coverage of hospitalization costs in the private sector from 50% to 90% is estimated at 362,068 IR, Rials per month. Conclusion: This study identifies the key factors that the population value with regard to health insurance and the tradeoffs they are willing to make between them. Hospitalization, drugs, and ancillary services were the most important determining factors for their choice. The data suggest that additional resources coming into the Iranian health system might best be prioritized to cover hospitalization and drug costs and those associated with ancillary services.

Keywords: social health insurance, preferences, discrete choice experiment, willingness to pay

Procedia PDF Downloads 90
852 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil

Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva

Abstract:

There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.

Keywords: container housing, civil construction, housing deficit, participatory design, sustainability

Procedia PDF Downloads 192
851 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst

Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš

Abstract:

Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.

Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory

Procedia PDF Downloads 113
850 The Effects of Globalization on Health: A Case of Kenyatta National Hospital Healthcare Services

Authors: S. Ithai, A. Oloo

Abstract:

The emergence of globalization has cultivated an international consensus that without economic development; it is very unlikely that a country may realize social or political development. It is equally important to note that the economic effect on social development automatically influence the country healthcare services as healthcare systems are improved and adopted. For decades and before 1980's, the colonial and the Governments of Kenya had pursued a goal to provide free healthcare services to its citizen with minimal success; but as population increased, this endeavor became almost a mirage. The challenge called for a change of strategy with introduction of cost sharing which also could not guarantee sustainability of healthcare services in the country due to increased number of poor people and poverty. An involvement of multisectral approach to provision of health individual, collaboration and adoption of all dimensions through globalization provides a ray of hope to not only economic, political and social development but also guaranteed equitable and reliable healthcare systems in Kenya and specifically referral healthcare services at KNH. With the advent of globalization, KNH has made positive strides that have guaranteed patients with reliable healthcare services. These include increased donor funding, collaboration levels, training and research as well as enhanced the hospital relations with international partners. During this period, the hospital has increased number of local doctors and nurses, enhanced transfer of skills, innovations and technologies which are driving forces to quality and efficient healthcare services. The period has also brought in challenges for the hospital which include increased competition, attraction of qualified nurses and doctors to international are some the issues that have made the hospital to spend more resources in research and development in order to stay afloat. This paper reveals the link between globalization and healthcare and its influence on institution policy choice. However, the process is not expected to take place automatically without institutional initiatives if KNH is to reap the benefits of globalization. KNH need to make use of the existing infrastructure, human resources and donor confidence, the opportunities that are indeed important in propelling KNH toward Vision 2030 and achieving the desired Millennium Development Goals (MDGs).

Keywords: globalization, Kenyatta National Hospital, native, healthcare

Procedia PDF Downloads 338
849 Comparative Analysis of Fused Deposition Modeling and Binding-Jet 3D Printing Technologies

Authors: Mohd Javaid, Shahbaz Khan, Abid Haleem

Abstract:

Purpose: Large numbers of 3D printing technologies are now available for sophisticated applications in different fields. Additive manufacturing has established its dominance in design, development, and customisation of the product. In the era of developing technologies, there is a need to identify the appropriate technology for different application. In order to fulfil this need, two widely used printing technologies such as Fused Deposition Modeling (FDM), and Binding-Jet 3D Printing are compared for effective utilisation in the current scenario for different applications. Methodology: Systematic literature review conducted for both technologies with applications and associated factors enabling for the same. Appropriate MCDM tool is used to compare critical factors for both the technologies. Findings: Both technologies have their potential and capabilities to provide better direction to the industry. Additionally, this paper is helpful to develop a decision support system for the proper selection of technologies according to their continuum of applications and associated research and development capability. The vital issue is raw materials, and research-based material development is key to the sustainability of the developed technologies. FDM is a low-cost technology which provides high strength product as compared to binding jet technology. Researcher and companies can take benefits of this study to achieve the required applications in lesser resources. Limitations: Study has undertaken the comparison with the opinion of experts, which may not always be free from bias, and some own limitations of each technology. Originality: Comparison between these technologies will help to identify best-suited technology as per the customer requirements. It also provides development in this different field as per their extensive capability where these technologies can be successfully adopted. Conclusion: FDM and binding jet technology play an active role in industrial development. These help to assist the customisation and production of personalised parts cost-effectively. So, there is a need to understand how these technologies can provide these developments rapidly. These technologies help in easy changes or in making revised versions of the product, which is not easily possible in the conventional manufacturing system. High machine cost, the requirement of skilled human resources, low surface finish, and mechanical strength of product and material changing option is the main limitation of this technology. However, these limitations vary from technology to technology. In the future, these technologies are to be commercially viable for efficient usage in direct manufacturing of varied parts.

Keywords: 3D printing, comparison, fused deposition modeling, FDM, binding jet technology

Procedia PDF Downloads 106
848 Adsorption and Photocatalytic Degradation of Textile Wastewater Using Green Synthesized Sequesters

Authors: Omotayo Sarafadeen Amuda, Kazeem Kolapo Salam, Oyediran Olarike Favour

Abstract:

This study carried out the physicochemical analysis of the Textile WasteWater (TWW) before and after the adsorption and photocatalytic processes. The adsorbents and catalysts that were used for this study were prepared from C. albidum seed shell activated with steam and then loaded with Titanium Dioxide Nanoparticles (TiO2NPs) and Copper Nanoparticles (Cu NPs), which were synthesized from green tea leaf extract and Citrus limon fruits extract, respectively. The photocatalytic activity was carried out under sunlight irradiation, and the effect of various parameters, such as catalyst dose, pH, contact time, and initial dye concentration, on the removal efficiency, were studied. The reusability of the catalyst was also observed to determine its stability and long-term efficacy. Ultra-violet visible spectroscopy (UV-Vis spectroscopy) was used to determine the dye concentration after each experiment. The adsorbents, nanoparticles, and photocatalysts were appropriately characterized for morphological, functional group, structural, and surface area using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) analysis, and Brunauer–Emmett–Teller (BET) analysis respectively. Batch adsorption studies were carried out on the wastewater, using the composite adsorbents, to determine the effects of pH, adsorbent dose, initial dye concentration, and contact time. The batch adsorption studies were conducted based on the runs generated from the Definitive Screen Design (DSD) of the Response Surface Methodology (RSM). The obtained data were subjected to the pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models, the Langmuir and Freundlich isotherm models, and thermodynamic parameters. The findings of this study contribute to the existing knowledge by providing more insights into the identification of efficient, low-cost, and environmentally-friendly approach to textile wastewater treatment. This approach enhances the reduction of potential toxicity from the discharged textile wastewater into the environment and, thus, conforms to Sustainable Development Goal 6 (SDG 6), which ensures the sustainability of the water resources, wastewater, and ecosystems.

Keywords: adsorption, photocatalytic, textile wastewater, green synthesized sequesters, degradation

Procedia PDF Downloads 12
847 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.

Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity

Procedia PDF Downloads 533
846 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 143
845 Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area

Authors: Sandra Rafael, Bruno Vicente, Vera Rodrigues, Carlos Borrego, Myriam Lopes

Abstract:

Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments.

Keywords: air pollutants dispersion, wind conditions, urban morphologies, road traffic emissions

Procedia PDF Downloads 348
844 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 57
843 A Qualitative Study on Exploring How the Home Environment Influences Eating and Physical Activity Habits of Low-Income Latino Children of Predominantly Immigrant Families

Authors: Ana Cristina Lindsay, Sherrie Wallington, Faith Lees, Mary Greaney

Abstract:

Purpose: Latino children in low-income families are at elevated risk of becoming overweight or obese. The purpose of this study was to examine low-income Latino parents’ beliefs, parenting styles and practices related to their children’s eating and physical activity behaviors while at home. Design and Methods: Qualitative study using focus group discussions with 33 low-income Latino parents of preschool children 2 to 5 years of age. Transcripts were analyzed using thematic analysis. Results: Data analyses revealed that most parents recognize the importance of healthy eating and physical activity for their children and themselves. However, daily life demands including conflicting schedules, long working hours, financial constraints, and neighborhood safety concerns, etc., impact parents’ ability to create a home environment supportive of these behaviors. Conclusions: This study provides information about how the home environment influences low-income Latino preschool children’s eating and physical activity habits. This information is useful for pediatric nurses in their health promotion and disease prevention efforts with low-income Latino families with young children, and for the development of home-based and parenting interventions to prevent and control childhood obesity among this population group. Practice Implications: Pediatric nurses can facilitate communication, provide education, and offer guidance to low-income Latino parents that support their children’s development of early healthy eating and physical activity habits, while taking into account daily life barriers faced by families. Moreover, nurses can play an important role in the integration and coordination of home-visitation to complement office-based visits and provide a continuum of care to low-income Latino families.

Keywords: home environment, Latino, obesity, parents, healthy eating, physical activity

Procedia PDF Downloads 287
842 Electrifying Textile Wastewater Sludge through Up-flow Anaerobic Sludge Blanket Reactor for Sustainable Waste Management

Authors: Tewodros Birhan, Tamrat Tesfaye

Abstract:

Energy supply and waste management are two of humanity's greatest challenges. The world's energy supply primarily relies on fossil fuels, which produce excessive carbon dioxide emissions when burned. When released into the atmosphere in high concentrations, these emissions contribute to global warming. Generating textile wastewater sludge from the Bahir Dar Textile Industry poses significant environmental challenges. This sludge, a byproduct of extensive dyeing and finishing processes, contains a variety of harmful chemicals and heavy metals that can contaminate soil and water resources. This research work explores sustainable waste management strategies, focusing on biogas production from textile wastewater sludge using up-flow anaerobic sludge blanket reactor technology. The objective was to harness biogas, primarily methane, as a renewable energy source while mitigating the environmental impact of textile wastewater disposal. Employing a Central Composite Design approach, experiments were meticulously designed to optimize process parameters. Two key factors, Carbon-to-Nitrogen ratio, and pH, were varied at different levels (20:1 and 25:1 for C: N ratio; 6.8 and 7.6 for pH) to evaluate their influence on methane yield. A 0.4m3 up-flow anaerobic sludge blanket reactor was constructed to facilitate the anaerobic digestion process. Over 26 days, the reactor underwent rigorous testing and monitoring to ascertain its efficiency in biogas production. Meticulous experimentation and data analysis found that the optimal conditions for maximizing methane yield were achieved. Notably, a methane yield of 56.4% was attained, which signifies the effectiveness of the up-flow anaerobic sludge blanket reactor in converting textile wastewater sludge into a valuable energy resource. The findings of this study hold significant implications for both environmental conservation and energy sustainability. Furthermore, the utilization of up-flow anaerobic sludge blanket reactor technology underscores its potential as a viable solution for biogas production from textile wastewater sludge, further promoting the transition towards a circular economy paradigm.

Keywords: anaerobic digestion, biogas energy, circular economy, textile sludge, waste-to-energy

Procedia PDF Downloads 15
841 Right of the City and Urban Boundaries: An Analytical Study of the Settlements in the Border of the River ‘Riachuelo’ on the Urban Agglomeration of Buenos Aires, Argentina

Authors: Mitchell De Sousa

Abstract:

The city of Buenos Aires and its agglomeration concentrates more than the thirty percent of the Argentine population. Historically, the political governments (essentially during the neoliberal ones) focused all the equipment, investment, progress on the north of the city since it is the place where all the financial, core services, and the main country harbor is. The south part of the town and all the cities around the south portion of it is has been, historically, where are concentrated the more vital unfulfilled needs of this population. The river that cross over the urban agglomeration of Buenos Aires, the Matanza-Riachuelo, has been historically a place of urban segregation since it is located south of the main town. From the post-colonial times, the river has been officially a place that separates the jurisdiction of the city of Buenos Aires with some of the towns that were built around the urban agglomeration. Since its place has never been treated as a whole and has always been treated as a boundary, there is always been a focus for factories to dispose its waste and an attractive place for a large portion of the underclasses to settled down there, occupying illegally the previous terrains that were once from the railway, now abandoned. Regarding those issues and adding a one more problematic one, those who lives beyond the boundary has few access to enter the main capital city. A few bridges connect some portions of it over the Matanza Riachuelo River, which there is also a limited accessibility to the main city from the south. Because of such, the main entrances to the town are always collapsed by all the services that the urban agglomeration offer (from buses to trains and individual cars). Beyond all the enlisted problems, the contamination of the river makes it one of the most contaminated rivers on the entire world. Those who lives in the settlements are in there for themselves, so the fight from them to their right of the city and their claims to the state for intervention in the urban coast is one of the most promising discussions surrounding this place of this urban agglomeration. The study focuses on the perception of those who lives in this boundary through interviews and collective experiences and is a part of a more developed project in the University of Buenos Aires study called ‘Urban landscape and a sustainable study through the interdisciplinary. Urban strategies on city borders’.

Keywords: Buenos Aires, landscape, mobility, popular sectors, urban segregation

Procedia PDF Downloads 154
840 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia

Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun

Abstract:

Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.

Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species

Procedia PDF Downloads 98
839 Financing Energy Efficiency: Innovative Options

Authors: Rahul Ravindranathan, R. P. Gokul

Abstract:

India, in its efforts towards economic and social development, is currently experiencing a heavy demand for energy. Due to the lack of sufficient domestic energy reserves, the country is highly dependent on energy imports which has increased rapidly at a rate of about 12 % per annum since 2005. Hence, India is currently focusing its efforts to manage this energy supply and demand gap and eventually achieve energy security. One of the most cost effective means to reduce this gap is by adopting Energy efficiency measures in the country. Initial assessments have shown that Energy efficiency measures have an energy conservation potential of about 23%. For an estimated investment potential of USD 8 Billion, the annual energy savings was estimated to be about 180 Billion Units per annum. In order to explore this huge energy conservation potential, many critical factors need to be considered to achieve practical energy savings. Financing options for these investments is one such major factor. Not only has India come out with various policy level as well as technology level drives to promote Energy efficiency but it has also developed various financing schemes to promote investment in Energy Efficiency projects. The Public sector has already come out with certain financing schemes such as the Partial Risk Guarantee Fund (PRGF), Venture Capital Fund (VCF), Partial Risk Sharing Fund (PRSF) etc., and various sectors are gradually utilizing these schemes to implement energy saving measures. However, additional financing options are required in order to explore the untouched energy conservation potential in the country. Hence, there is a need to develop some innovative financing options for India which would motivate the private sectors as well as financing institutions to invest in these energy saving measures. This paper shall review the existing financing schemes launched by the Government of India and highlight the key benefits as well as challenges with respect to these schemes. In addition to this, the paper would also review new and innovative financing schemes for India and how the same could be adopted in other parts of the globe especially in South and South East Asia. This review would provide an insight to the various Governments as well as Financial Institutions in coming out with new financing schemes for their country.

Keywords: energy, efficiency, financing, India

Procedia PDF Downloads 341
838 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 193
837 Using Life Cycle Assessment in Potable Water Treatment Plant: A Colombian Case Study

Authors: Oscar Orlando Ortiz Rodriguez, Raquel A. Villamizar-G, Alexander Araque

Abstract:

There is a total of 1027 municipal development plants in Colombia, 70% of municipalities had Potable Water Treatment Plants (PWTPs) in urban areas and 20% in rural areas. These PWTPs are typically supplied by surface waters (mainly rivers) and resort to gravity, pumping and/or mixed systems to get the water from the catchment point, where the first stage of the potable water process takes place. Subsequently, a series of conventional methods are applied, consisting in a more or less standardized sequence of physicochemical and, sometimes, biological treatment processes which vary depending on the quality of the water that enters the plant. These processes require energy and chemical supplies in order to guarantee an adequate product for human consumption. Therefore, in this paper, we applied the environmental methodology of Life Cycle Assessment (LCA) to evaluate the environmental loads of a potable water treatment plant (PWTP) located in northeastern Colombia following international guidelines of ISO 14040. The different stages of the potable water process, from the catchment point through pumping to the distribution network, were thoroughly assessed. The functional unit was defined as 1 m³ of water treated. The data were analyzed through the database Ecoinvent v.3.01, and modeled and processed in the software LCA-Data Manager. The results allowed determining that in the plant, the largest impact was caused by Clarifloc (82%), followed by Chlorine gas (13%) and power consumption (4%). In this context, the company involved in the sustainability of the potable water service should ideally reduce these environmental loads during the potable water process. A strategy could be the use of Clarifloc can be reduced by applying coadjuvants or other coagulant agents. Also, the preservation of the hydric source that supplies the treatment plant constitutes an important factor, since its deterioration confers unfavorable features to the water that is to be treated. By concluding, treatment processes and techniques, bioclimatic conditions and culturally driven consumption behavior vary from region to region. Furthermore, changes in treatment processes and techniques are likely to affect the environment during all stages of a plant’s operation cycle.

Keywords: climate change, environmental impact, life cycle assessment, treated water

Procedia PDF Downloads 226
836 Prevalence, Associated Risk Factors, and Bacterial Pathogens in Dairy Camels: A Review

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdelatif, Rabah Siham

Abstract:

Camels play a vital role as multipurpose animals, providing milk meat and serving as a means of transportation. They serve as a financial reserve for pastoralists and hold significant cultural and social value. Camel milk, known for its exceptional nutritional properties, is considered a valuable substitute for human milk. However, udder infections, particularly mastitis, pose significant challenges to camel farming. Clinical and subclinical mastitis can lead to substantial economic losses. Mastitis, especially the subclinical form, is a persistent and prevalent condition affecting milk hygiene and quality in dairy camels. This review offers insights into the prevalence and risk factors associated with subclinical mastitis in camels. The prevalence of subclinical mastitis in dairy camels was found to range from 9.28% to 87.78%. Major pathogens responsible for camel mastitis include Staphylococcus aureus, Coagulase-negative Staphylococcus, Streptococcus agalactiae, Streptococcus dysgalactiae, Escherichia coli, Micrococcus spp, Pasteurella haemolytica and Corynebacterium spp. The study outlines key risk factors contributing to camel mastitis, emphasizing factors such as severe tick infestation, age, stage of lactation, parity, body condition score, skin lesion on the teats or udders, anti-suckling devices, previous history of the udder, conformation of the udder, breed, unhygienic milking practices, production system, amongst others have been reported to be important in the prevalence of subclinical mastitis. This comprehensive overview provides valuable insights into the multifaceted aspects of camel mastitis, encompassing prevalent bacterial pathogens and diverse risk factors. The findings underscore the importance of holistic management practices, emphasizing hygiene, health monitoring, and targeted interventions to ensure the well-being and productivity of camels in various agro-pastoral contexts.

Keywords: bacterial pathogens, camel, mastitis, risk factors

Procedia PDF Downloads 83
835 Continuous-Time Convertible Lease Pricing and Firm Value

Authors: Ons Triki, Fathi Abid

Abstract:

Along with the increase in the use of leasing contracts in corporate finance, multiple studies aim to model the credit risk of the lease in order to cover the losses of the lessor of the asset if the lessee goes bankrupt. In the current research paper, a convertible lease contract is elaborated in a continuous time stochastic universe aiming to ensure the financial stability of the firm and quickly recover the losses of the counterparties to the lease in case of default. This work examines the term structure of the lease rates taking into account the credit default risk and the capital structure of the firm. The interaction between the lessee's capital structure and the equilibrium lease rate has been assessed by applying the competitive lease market argument developed by Grenadier (1996) and the endogenous structural default model set forward by Leland and Toft (1996). The cumulative probability of default was calculated by referring to Leland and Toft (1996) and Yildirim and Huan (2006). Additionally, the link between lessee credit risk and lease rate was addressed so as to explore the impact of convertible lease financing on the term structure of the lease rate, the optimal leverage ratio, the cumulative default probability, and the optimal firm value by applying an endogenous conversion threshold. The numerical analysis is suggestive that the duration structure of lease rates increases with the increase in the degree of the market price of risk. The maximal value of the firm decreases with the effect of the optimal leverage ratio. The results are indicative that the cumulative probability of default increases with the maturity of the lease contract if the volatility of the asset service flows is significant. Introducing the convertible lease contract will increase the optimal value of the firm as a function of asset volatility for a high initial service flow level and a conversion ratio close to 1.

Keywords: convertible lease contract, lease rate, credit-risk, capital structure, default probability

Procedia PDF Downloads 100
834 Shariah Perspective on Legal Framework and Practice of Margin Financing in Pakistan

Authors: Anees Tahir

Abstract:

Margin financing plays a significant role in Pakistan's stock market (PSX), offering investors the opportunity to maximize profits by borrowing funds from financiers to purchase marginable stocks. However, this financial practice raises several Shariah-related concerns. The study follows legal doctrinal research methodology. It explains and analyzes the law of margin financing prevailing in PSX and compares it with the principles of Shariah. It also examines and investigates the practices of margin financing from the perspective of Shariah. As part of the study, the researcher has conducted structured interviews with the Shariah advisors of the finance industry, academicians, market practitioners, and regulators. Thus, the study analyzes the findings of interviews. This article explores the legal framework and practice of margin financing in Pakistan from a Shariah perspective. The article investigates various issues relating to margin financing, including the fundamental concern of interest-based lending, which contravenes Islamic principles. It also highlights the problematic subject matter of margin financing, often involving non-Shariah compliant securities. Additionally, the article addresses the restriction on proprietary rights and the problematic element of speculation associated with margin financing. To provide a Shariah-compliant alternative, the Securities and Exchange Commission of Pakistan (SECP) introduced Murabahah Shares Financing (MSF) in 2019. However, the focus of the market is still on conventional margin financing. In the opinion of the researcher, the effective implementation of MSF is imperative because in the absence of such an alternative, the faith sensitive investor will remain deprived of a level playing field, and he is unable to get required financing opportunities through a halal and Shariah-compliant manner. This article argues that margin financing in its current form is incompatible with Shariah principles and should be discontinued. It is recommended that the SECP should gradually phase out the use of margin financing and increase reliance on MSF to provide faith-sensitive and committed investors with Shariah-compliant financing options.

Keywords: margin financing, marginable stocks, faith sensitive investor, Murabahah shares financing

Procedia PDF Downloads 72
833 Pandemic-Era WIC Participation in Delaware, U.S.: Participants' Experiences and Challenges

Authors: McKenna Halverson, Allison Karpyn

Abstract:

Introduction: The COVID-19 pandemic posed unprecedented challenges for families with young children in the United States. The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), a federal nutrition assistance program that provides low-income mothers and young children with access to healthy foods (e.g., infant formula, milk, and peanut butter), mitigated some financial challenges for families. However, the U.S. experienced a national infant formula shortage and rising inflation rates during the pandemic, which likely impacted WIC participants’ shopping experiences and well-being. As such, this study aimed to characterize how the COVID-19 pandemic and related events impacted Delaware WIC participants’ in-store benefit redemption experiences and overall well-being. Method: The authors conducted semi-structured interviews with 51 WIC participants in Wilmington, Delaware. Survey measures included demographic questions and open-ended questions regarding participants’ experiences with WIC benefit redemption during the COVID-19 pandemic. Data were analyzed using a hybrid inductive and deductive coding approach. Findings: The COVID-19 pandemic significantly impacted WIC participants’ shopping experiences and well-being. Specifically, participants were forced to alter their shopping behaviors to account for rising food prices (e.g., used coupons, bought less food, used food banks). Additionally, WIC participants experienced significant distress during the national infant formula shortage resulting from difficulty finding formula to feed their children. Participants also struggled with in-store benefit redemption due to inconsistencies in shelf labelling, the WIC app, and low stock of WIC foods. These findings highlight the need to reexamine WIC operations and emergency food response policy in the United States during times of crisis to optimize public health and ensure federal nutrition assistance programs meeting the needs of low-income families with young children.

Keywords: benefit redemption, COVID-19 pandemic, infant formula shortage, inflation, shopping, WIC

Procedia PDF Downloads 76
832 Coastal Water Quality Assessment in Hormozgan Province: Implications for Sustainable Marine Ecosystems and Aquaculture in the Persian Gulf

Authors: Sharareh Khodami, Mohammad Seddiq Mortazavi, Seyedeh Laili Mohebbi-Nozar, Fereshteh Saraji, S. Behzadi, Gholam Ali Akbarzadeh, Mitra Naemi, Pararin Bahreini

Abstract:

Water quality is a critical driver of healthy marine ecosystems and a cornerstone of the blue economy, particularly fisheries. The coastal waters of Hormozgan Province, located in the northern Persian Gulf and Gulf of Oman, are increasingly threatened by wastewater discharges from industrial, urban, and agricultural activities. This study evaluates the spatial and temporal patterns of coastal water quality over two decades (2001–2021), drawing on a comprehensive dataset from 200 sampling stations along the province’s shoreline. Key environmental parameters temperature, dissolved oxygen, pH, turbidity, nitrate, ammonium, phosphate, chlorophyll-a, and total bacteria count were analyzed. Using Geographic Information Systems (GIS), spatial distributions were mapped, and a Water Quality Index (WQI) was derived to classify overall water quality conditions. The weight and normalization factors were determined using the Analytic Hierarchy Process (AHP) and expert judgment, supported by questionnaires and a range of literature sources. Four distinct groups of experts contributed to this process: academics, researchers, government officials, and consultants. The WQI values ranged from weak to excellent, reflecting notable spatial variability. The interquartile range (IQR) method was applied to determine acceptable parameter ranges and establish early-warning thresholds for management. Zones were categorized into “caution” and “action” areas, guiding targeted interventions. Results highlight the significant impacts of sustained nutrient loading, particularly from nitrate and phosphate linked to anthropogenic sources, on coastal ecosystem health. These findings underscore the urgent need for stringent nutrient management policies to protect marine ecosystems, ensuring the long-term sustainability of fisheries and other marine resources in this region.

Keywords: coastal area, Hormozgan, Persian Gulf, water quality

Procedia PDF Downloads 7
831 Female Entrepreneurship in Transitional Economies: An In-Depth Comparative Study about Challenges Facing Female Entrepreneurs in Nigeria and Egypt

Authors: Dina Mohamed Ayman, Rafieu Akin

Abstract:

In an attempt to increase the female total entrepreneurial activities (TEA) within Egypt and Nigeria, this paper aims to investigate the challenges facing female entrepreneurs operating in Egypt, in relative to Nigeria. In this regard, both researchers undertook a qualitative approach due to the scarcity of the literature reviewed on the topic; in those particular countries, and as an in-depth comparative mode. Therefore, ten Egyptian entrepreneurs in relative to ten Nigerian entrepreneurs were in-depth investigated. The research findings prove that female entrepreneurs face complex problems for being both gender and country-specific. Regarding the gender-specific obstacles, the work/life imbalance due to the scarcity of child-care nurseries and the prevalence of the gender-role division while performing the house chores rather than the concept of co-operation, acted as a main source of cultural challenge because women are considered mostly as 'housewives'. However, interestingly, this specific gender-discrimination challenge is proven to have no grounded effect in terms of the business-establishment and daily dealings neither in Egypt nor Nigeria, as one of the sample exclaimed 'as long as you pay, then no gender difference is set on the table'. Other country-specific challenges facing female entrepreneurs, lied in, the aggregate weak entrepreneurial framework governing both countries, also, women faced the difficulty of access to financial institutions with collateral requirements that are usually "hardly to be met", besides, the absence of the "micro-credit-Grameen-banks" concept. As well, the scarcity of incubators and business training centers providing network, consultancy and well-trained workforce to female entrepreneurs constitute a major hurdle for women entrepreneurs operating in both countries. Finally, this paper will conclude the research by offering a set of public-policy recommendations to pave the way for females to choose self-employment as a career path.

Keywords: entrepreneurship, female entrepreneurship, obstacles, framework conditions, culture, micro-credit

Procedia PDF Downloads 372
830 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 128
829 Food Security and Utilization in Ethiopia

Authors: Tuji Jemal Ahmed

Abstract:

Food security and utilization are critical aspects of ensuring the well-being and prosperity of a nation. This paper examines the current state of food security and utilization in Ethiopia, focusing on the challenges, opportunities, and strategies employed to address the issue. Ethiopia, a country in East Africa, has made significant progress in recent years to improve food security and utilization for its population. However, persistent challenges such as recurrent droughts, limited access to resources, and low agricultural productivity continue to pose obstacles to achieving sustainable food security. The paper begins by providing an overview of the concept of food security, emphasizing its multidimensional nature and the importance of access, availability, utilization, and stability. It then explores the specific factors influencing food security and utilization in Ethiopia, including natural resources, climate variability, agricultural practices, infrastructure, and socio-economic factors. Furthermore, the paper highlights the initiatives and interventions implemented by the Ethiopian government, non-governmental organizations, and international partners to enhance food security and utilization. These efforts include agricultural extension programs, irrigation projects, investments in rural infrastructure, and social safety nets to protect vulnerable populations. The study also examines the role of technology and innovation in improving food security and utilization in Ethiopia. It explores the potential of sustainable agricultural practices, such as conservation agriculture, improved seed varieties, and precision farming techniques. Additionally, it discusses the role of digital technologies in enhancing access to market information, financial services, and agricultural inputs for smallholder farmers. Finally, the paper discusses the importance of collaboration and partnerships between stakeholders, including government agencies, development organizations, research institutions, and communities, in addressing food security and utilization challenges. It emphasizes the need for integrated and holistic approaches that consider both production and consumption aspects of the food system.

Keywords: food security, utilization, Ethiopia, challenges

Procedia PDF Downloads 85