Search results for: proportional hazard model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17609

Search results for: proportional hazard model

17219 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 596
17218 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Authors: P. Mukhopadhyay, N. C. Dey

Abstract:

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Keywords: workload, working heart rate, occupational health hazard, industrial worker

Procedia PDF Downloads 135
17217 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 275
17216 Association of Phytomineral Supplementation with the Seasonal Prevalence of Gastrointestinal Parasites of Grazing Sheep in the Scenario of Climate Change

Authors: Muhammad Sohail Sajid, Hafiz Muhammad Rizwan, Ashfaq Ahmad Chatta, Zafar Iqbal, Muhammad Saqib

Abstract:

Changes in the climate are posing threats to the livestock community throughout the globe. Agro-grazing animals and natural vegetation as their forages are the most important components of animal production. Climate and local conditions not only determine the nature and kind of plants, their distribution, composition and nutritive value in different cropping belts and grazing sites but also influence number and kinds of grazing animals. Phytomineral supplementation can act as an indirect tool to boost-up immunological profile of animals leading to the development of resilience against parasitic infections. The present study correlates the trace element (Cu, Co, Mn, Zn) profile of grazing sheep, feedstuffs, respective soils and their GI helminths in a selected district of Sialkot, Punjab, Pakistan. Ten species of GI helminths were found during the survey. A significant (P < 0.05) variation in the concentrations (conc.) of Zn, Cu, Mn and Co was recorded in a total of 16 collected forages. During autumn, mean conc. of Cu, Zn and Co in sera were inversely proportional to the GI helminth burden; while, during spring, only Zn was inversely proportional to the GI helminth burden in grazing sheep. During autumn the highest conc. of Zn, Cu, Mn and Co were recorded in Echinochloa colona, Amaranthus viridis, Cannabis sativa, and Brachiaria ramose and during spring in Cichorium intybus, Cynodon dactylon, Parthenium hysterophorus and Coronopus didymus respectively. The trace element-rich forages, preferably Zn, found effective against helminth infection are advisable supplemental remedies to improve the trace element profile in grazing sheep. This mitigation strategy may ultimately improve the resilience against GI helminth infections especially in the resource poor countries like Pakistan.

Keywords: coprological examination, Trace elements, Sheep, Gastro-intestinal parasites, Prevalence, Sialkot, Pakistan

Procedia PDF Downloads 392
17215 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 112
17214 All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Authors: S. A. Sadegh Zadeh, C. Kambhampati

Abstract:

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

Keywords: all-or-none, computational modelling, mathematical model, transmembrane voltage, action potential

Procedia PDF Downloads 617
17213 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 219
17212 Dietary Vitamin D Intake and the Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies

Authors: Iris W. A. Boot, Anke Wesselius, Maurice P. Zeegers

Abstract:

Diet may play an essential role in the aetiology of bladder cancer (BC). Vitamin D is involved in various biological functions which have the potential to prevent BC development. Besides, vitamin D also influences the uptake of calcium and phosphorus , thereby possibly indirectly influencing the risk of BC. The aim of the present study was to investigate the relation between vitamin D intake and BC risk. Individual dietary data were pooled from three cohort studies. Food item intake was converted to daily intakes of vitamin D, calcium and phosphorus. Pooled multivariate hazard ratios (HRs), with corresponding 95% confidence intervals (CIs) were obtained using Cox-regression models. Analyses were adjusted for gender, age and smoking status (Model 1), and additionally for the food groups fruit, vegetables and meat (Model 2). Dose–response relationships (Model 1) were examined using a nonparametric test for trend. In total, 2,871 cases and 522,364 non-cases were included in the analyses. The present study showed an overall increased BC risk for high dietary vitamin D intake (HR: 1.14, 95% CI: 1.03-1.26). A similar increase BC risk with high vitamin D intake was observed among women and for the non-muscle invasive BC subtype, (HR: 1.41, 95% CI: 1.15-1.72, HR: 1.13, 95% CI: 1.01-1.27, respectively). High calcium intake decreased the BC risk among women (HR: 0.81, 95% CI: 0.67-0.97). A combined inverse effect on BC risk was observed for low vitamin D intake and high calcium intake (HR: 0.67, 95% CI: 0.48-0.93), while a positive effect was observed for high vitamin D intake in combination with low, moderate and high phosphorus (HR: 1.31, 95% CI: 1.09-1.59, HR: 1.17, 95% CI: 1.01-1.36, HR: 1.16, 95% CI: 1.03-1.31, respectively). Combining all nutrients showed a decreased BC risk for low vitamin D intake, high calcium and moderate phosphor intake (HR: 0.37, 95% CI: 0.18-0.75), and an increased BC risk for moderate intake of all the nutrients (HR: 1.18, 95% CI: 1.02-1.38), for high vitamin D and low calcium and phosphor intake (HR: 1.28, 95% CI: 1.01-1.62), and for moderate vitamin D and calcium and high phosphorus intake (HR: 1.27, 95% CI: 1.01-1.59). No significant dose-response analyses were observed. The findings of this study show an increased BC risk for high dietary vitamin D intake and a decreased risk for high calcium intake. Besides, the study highlights the importance of examining the effect of a nutrient in combination with complementary nutrients for risk assessment. Future research should focus on nutrients in a wider context and in nutritional patterns.

Keywords: bladder cancer, nutritional oncology, pooled cohort analysis, vitamin D

Procedia PDF Downloads 84
17211 Coastal Flood Mapping of Vulnerability Due to Sea Level Rise and Extreme Weather Events: A Case Study of St. Ives, UK

Authors: S. Vavias, T. R. Brewer, T. S. Farewell

Abstract:

Coastal floods have been identified as an important natural hazard that can cause significant damage to the populated built-up areas, related infrastructure and also ecosystems and habitats. This study attempts to fill the gap associated with the development of preliminary assessments of coastal flood vulnerability for compliance with the EU Directive on the Assessment and Management of Flood Risks (2007/60/EC). In this context, a methodology has been created by taking into account three major parameters; the maximum wave run-up modelled from historical weather observations, the highest tide according to historic time series, and the sea level rise projections due to climate change. A high resolution digital terrain model (DTM) derived from LIDAR data has been used to integrate the estimated flood events in a GIS environment. The flood vulnerability map created shows potential risk areas and can play a crucial role in the coastal zone planning process. The proposed method has the potential to be a powerful tool for policy and decision makers for spatial planning and strategic management.

Keywords: coastal floods, vulnerability mapping, climate change, extreme weather events

Procedia PDF Downloads 397
17210 Multiscale Modelling of Citrus Black Spot Transmission Dynamics along the Pre-Harvest Supply Chain

Authors: Muleya Nqobile, Winston Garira

Abstract:

We presented a compartmental deterministic multi-scale model which encompass internal plant defensive mechanism and pathogen interaction, then we consider nesting the model into the epidemiological model. The objective was to improve our understanding of the transmission dynamics of within host and between host of Guignardia citricapa Kiely. The inflow of infected class was scaled down to individual level while the outflow was scaled up to average population level. Conceptual model and mathematical model were constructed to display a theoretical framework which can be used for predicting or identify disease pattern.

Keywords: epidemiological model, mathematical modelling, multi-scale modelling, immunological model

Procedia PDF Downloads 460
17209 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 351
17208 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 330
17207 The Association between Acupuncture Treatment and a Decreased Risk of Irritable Bowel Syndrome in Patients with Depression

Authors: Greg Zimmerman

Abstract:

Background: Major depression is a common illness that affects millions of people globally. It is the leading cause of disability and is projected to become the number one cause of the global burden of disease by 2030. Many of those who suffer from depression also suffer from Irritable Bowel Syndrome (IBS). Acupuncture has been shown to help depression. The aim of this study was to investigate the effectiveness of acupuncture in reducing the risk of IBS in patients with depression. Methods: We enrolled patients diagnosed with depression through the Taiwanese National Health Insurance Research Database (NHIRD). Propensity score matching was used to match equal numbers (n=32971) of the acupuncture cohort and no-acupuncture cohort based on characteristics including sex, age, baseline comorbidity, and medication. The Cox regression model was used to compare the hazard ratios (HRs) of IBS in the two cohorts. Results: The basic characteristics of the two groups were similar. The cumulative incidence of IBS was significantly lower in the acupuncture cohort than in the no-acupuncture cohort (Log-rank test, p<0.001). Conclusion: The results provided real-world evidence that acupuncture may have a beneficial effect on IBS risk reduction in patients with depression.

Keywords: acupuncture, depression, irritable bowel syndrome, national health insurance research database, real-world evidence

Procedia PDF Downloads 107
17206 Proposal for a Generic Context Meta-Model

Authors: Jaouadi Imen, Ben Djemaa Raoudha, Ben Abdallah Hanene

Abstract:

The access to relevant information that is adapted to users’ needs, preferences and environment is a challenge in many applications running. That causes an appearance of context-aware systems. To facilitate the development of this class of applications, it is necessary that these applications share a common context meta-model. In this article, we will present our context meta-model that is defined using the OMG Meta Object facility (MOF). This meta-model is based on the analysis and synthesis of context concepts proposed in literature.

Keywords: context, meta-model, MOF, awareness system

Procedia PDF Downloads 562
17205 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases

Authors: Daniel C. Bonzo

Abstract:

Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.

Keywords: clustered data, estimand, extrapolation, mixed model

Procedia PDF Downloads 137
17204 Integrated Steering Method for Mitigating Performance Degradation in Six-Wheel Robot Caused by Obstacle Traversing

Authors: Saleh Kasiri Bidhendi, Shiva Tashakori

Abstract:

With the increasing application of six-wheel robots in various industries, including agriculture and environmental monitoring, there is a growing demand for efficient and reliable control systems that can improve manoeuvrability and at the same time reduce energy consumption. Moving on uneven terrains, various factors such as obstacles or soil heterogeneity can cause the robot to slip. There is limited research addressing this issue. Although the robot is supposed to track a predetermined path, sudden lateral deviation necessitates path planning. To further address this issue, explicit steering is added by activating actuators on steerable wheels, while the SMC controller still commands differential traction forces on all wheels. This integration improves energy efficiency and obstacle traversability while maintaining the merits of skid-steering, such as tight turning manoeuvrability. However, achieving the desired steer angles presents certain challenges. Inverse kinematics was initially employed to achieve the needed steering angles from the desired position, but this approach led to excessive steering without yawing the body. Switching to desired velocity values instead of position limited over-steering but caused zero lateral velocity on horizontal paths, which was problematic for unforeseen skidding. To overcome this, a proportional controller has been employed, using lateral error as its input and providing a proportional yaw angle as output, the P-controller contributes to modifying the steering angles. The controller's robustness has been verified through sensitivity analyses under critical speeds and turning radius conditions. Our findings offer valuable insights into designing more efficient steering controls for rocker-bogie mechanisms in challenging situations, emphasizing the importance of reducing energy¬ consumption.

Keywords: six-wheel robots, inverse kinematics, integrated steering, path following, manoeuvrability, energy efficiency, uneven terrains

Procedia PDF Downloads 34
17203 Model of MSD Risk Assessment at Workplace

Authors: K. Sekulová, M. Šimon

Abstract:

This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.

Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors

Procedia PDF Downloads 551
17202 Identification of Classes of Bilinear Time Series Models

Authors: Anthony Usoro

Abstract:

In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.

Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model

Procedia PDF Downloads 409
17201 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 132
17200 Clinical Efficacy of Nivolumab and Ipilimumab Combination Therapy for the Treatment of Advanced Melanoma: A Systematic Review and Meta-Analysis of Clinical Trials

Authors: Zhipeng Yan, Janice Wing-Tung Kwong, Ching-Lung Lai

Abstract:

Background: Advanced melanoma accounts for the majority of skin cancer death due to its poor prognosis. Nivolumab and ipilimumab are monoclonal antibodies targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocytes antigen 4 (CTLA-4). Nivolumab and ipilimumab combination therapy has been proven to be effective for advanced melanoma. This systematic review and meta-analysis are to evaluate its clinical efficacy and adverse events. Method: A systematic search was done on databases (Pubmed, Embase, Medline, Cochrane) on 21 June 2020. Search keywords were nivolumab, ipilimumab, melanoma, and randomised controlled trials. Clinical trials fulfilling the inclusion criteria were selected to evaluate the efficacy of combination therapy in terms of prolongation of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The odd ratios and distributions of grade 3 or above adverse events were documented. Subgroup analysis was performed based on PD-L1 expression-status and BRAF-mutation status. Results: Compared with nivolumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR in combination therapy were 0.64 (95% CI, 0.48-0.85; p=0.002), 0.84 (95% CI, 0.74-0.95; p=0.007) and 1.76 (95% CI, 1.51-2.06; p < 0.001), respectively. Compared with ipilimumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR were 0.46 (95% CI, 0.37-0.57; p < 0.001), 0.54 (95% CI, 0.48-0.61; p < 0.001) and 6.18 (95% CI, 5.19-7.36; p < 0.001), respectively. In combination therapy, the odds ratios of grade 3 or above adverse events were 4.71 (95% CI, 3.57-6.22; p < 0.001) compared with nivolumab monotherapy, and 3.44 (95% CI, 2.49-4.74; p < 0.001) compared with ipilimumab monotherapy, respectively. High PD-L1 expression level and BRAF mutation were associated with better clinical outcomes in patients receiving combination therapy. Conclusion: Combination therapy is effective for the treatment of advanced melanoma. Adverse events were common but manageable. Better clinical outcomes were observed in patients with high PD-L1 expression levels and positive BRAF-mutation.

Keywords: nivolumab, ipilimumab, advanced melanoma, systematic review, meta-analysis

Procedia PDF Downloads 138
17199 Determination of Vitamin C (Ascorbic Acid) in Orange Juices Product

Authors: Wanida Wonsawat

Abstract:

This research describes a voltammetric approach to determine amounts of vitamin C (Ascorbic acid) in orange juice sample, using three screen printed electrode. The anodic currents of vitamin C were proportional to vitamin C concentration in the range of 0 – 10.0 mM with the limit of detection of 1.36 mM. The method was successfully employed with 2 µL of the working solution dropped on the electrode surface. The proposed method was applied for the analysis of vitamin C in packed orange juice without sample purification or complexion of sample preparation step.

Keywords: ascorbic acid, vitamin C, juice, voltammetry

Procedia PDF Downloads 327
17198 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 208
17197 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 245
17196 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 268
17195 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 58
17194 OmniDrive Model of a Holonomic Mobile Robot

Authors: Hussein Altartouri

Abstract:

In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.

Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot

Procedia PDF Downloads 611
17193 Surveying Earthquake Vulnerabilities of District 13 of Kabul City, Afghanistan

Authors: Mohsen Mohammadi, Toshio Fujimi

Abstract:

High population and irregular urban development in Kabul city, Afghanistan's capital, are among factors that increase its vulnerability to earthquake disasters (on top of its location in a high seismic region); this can lead to widespread economic loss and casualties. This study aims to evaluate earthquake risks in Kabul's 13th district based on scientific data. The research data, which include hazard curves of Kabul, vulnerability curves, and a questionnaire survey through sampling in district 13, have been incorporated to develop risk curves. To estimate potential casualties, we used a set of M parameters in a model developed by Coburn and Spence. The results indicate that in the worst case scenario, more than 90% of district 13, which comprises mostly residential buildings, is exposed to high risk; this may lead to nearly 1000 million USD economic loss and 120 thousand casualties (equal to 25.88% of the 13th district's population) for a nighttime earthquake. To reduce risks, we present the reconstruction of the most vulnerable buildings, which are primarily adobe and masonry buildings. A comparison of risk reduction between reconstructing adobe and masonry buildings indicates that rebuilding adobe buildings would be more effective.

Keywords: earthquake risk evaluation, Kabul, mitigation, vulnerability

Procedia PDF Downloads 284
17192 A Constitutive Model for Time-Dependent Behavior of Clay

Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili

Abstract:

A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.

Keywords: bounding surface, consistency theory, constitutive model, viscosity

Procedia PDF Downloads 493
17191 Corporate Governance and Disclosure Practices of Listed Companies in the ASEAN: A Conceptual Overview

Authors: Chen Shuwen, Nunthapin Chantachaimongkol

Abstract:

Since the world has moved into a transitional period, known as globalization; the business environment is now more complicated than ever before. Corporate information has become a matter of great importance for stakeholders, in order to understand the current situation. As a result of this, the concept of corporate governance has been broadly introduced to manage and control the affairs of corporations while businesses are required to disclose both financial and non-financial information to public via various communication channels such as the annual report, the financial report, the company’s website, etc. However, currently there are several other issues related to asymmetric information such as moral hazard or adverse selection that still occur intensively in workplaces. To prevent such problems in the business, it is required to have an understanding of what factors strengthen their transparency, accountability, fairness, and responsibility. Under aforementioned arguments, this paper aims to propose a conceptual framework that enables an investigation on how corporate governance mechanism influences disclosure efficiency of listed companies in the Association of Southeast Asia Nations (ASEAN) and the factors that should be considered for further development of good behaviors, particularly in regards to voluntary disclosure practices. To achieve its purpose, extensive reviews of literature are applied as a research methodology. It is divided into three main steps. Firstly, the theories involved with both corporate governance and disclosure practices such as agency theory, contract theory, signaling theory, moral hazard theory, and information asymmetry theory are examined to provide theoretical backgrounds. Secondly, the relevant literatures based on multi- perspectives of corporate governance, its attributions and their roles on business processes, the influences of corporate governance mechanisms on business performance, and the factors determining corporate governance characteristics as well as capability are reviewed to outline the parameters that should be included in the proposed model. Thirdly, the well-known regulatory document OECD principles and previous empirical studies on the corporate disclosure procedures are evaluated to identify the similarities and differentiations with the disclosure patterns in the ASEAN. Following the processes and consequences of the literature review, abundant factors and variables are found. Further to the methodology, additional critical factors that also have an impact on the disclosure behaviors are addressed in two groups. In the first group, the factors which are linked to the national characteristics - the quality of national code, legal origin, culture, the level of economic development, and so forth. Whereas in the second group, the discoveries which refer to the firm’s characteristics - ownership concentration, ownership’s rights, controlling group, and so on. However, because of research limitations, only some literature are chosen and summarized to form part of the conceptual framework that explores the relationship between corporate governance and the disclosure practices of listed companies in ASEAN.

Keywords: corporate governance, disclosure practice, ASEAN, listed company

Procedia PDF Downloads 194
17190 Establishment of Decision Support Center for Managing Natural Hazard Consequence in Kuwait

Authors: Abdullah Alenezi, Mane Alsudrawi, Rafat Misak

Abstract:

Kuwait is faced with a potentially wide and harmful range of both natural and anthropogenic hazardous events such as dust storms, floods, fires, nuclear accidents, earthquakes, oil spills, tsunamis and other disasters. For Kuwait can be highly vulnerable to these complex environmental risks, an up-to-date and in-depth understanding of their typology, genesis, and impact on the Kuwaiti society is needed. Adequate anticipation and management of environmental crises further require a comprehensive system of decision support to the benefit of decision makers to further bridge the gap between (technical) risk understanding and public action. For that purpose, the Kuwait Institute for Scientific Research (KISR), intends to establish a decision support center for management of the environmental crisis in Kuwait. The center will support policy makers, stakeholders and national committees with technical information that helps them efficiently and effectively assess, monitor to manage environmental disasters using decision support tools. These tools will build on state of the art quantification and visualization techniques, such as remote sensing information, Geographical Information Systems (GIS), simulation and prediction models, early warning systems, etc. The center is conceived as a central facility which will be designed, operated and managed by KISR in coordination with national authorities and decision makers of the country. Our vision is that by 2035 the center will be recognized as a leading national source of scientific advice on national risk management in Kuwait and build unity of effort among Kuwaiti’s institutions, government agencies, public and private organizations through provision and sharing of information. The project team now focuses on capacity building through upgrading some KISR facilities manpower development, build strong collaboration with international alliance.

Keywords: decision support, environment, hazard, Kuwait

Procedia PDF Downloads 314