Search results for: potential evaporation
11388 Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan
Authors: Darn H. Hsiao, Zhu-Yun Zheng
Abstract:
Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential.Keywords: liquefaction, western Taiwan, liquefaction potential map, high liquefaction potential areas
Procedia PDF Downloads 11811387 Assessing a Potential Conceive Design Implement Operate Curricular Change in an Engineering Degree
Authors: L. Miranda
Abstract:
The requirements of the engineering education are nowadays very broad and demand a set of skills which demands not only technical knowledge but also the ability to lead and innovate and personal and interpersonal skills. A framework for the assessment of a potential curricular change is necessary to guide the analysis of the program with respect to the stakeholders and the legislation of the country, in order to develop appropriate learning outcomes. A Conceive-Design-Implement-Operate (CDIO) approach was chosen for an evaluation conducted in a mechanical engineering degree in Brazil. The work consisted in the application of a survey with students and professors and a literature review of the legislation and studies that raised the required competences and skills for the modern engineer. The results show a great potential for a CDIO set of skills in engineering degrees in Brazil and reveal the frequent demands of stakeholders before a curricular change.Keywords: curriculum change, conceive design implement operate, accreditation, personal and interpersonal skills
Procedia PDF Downloads 36311386 Internal Migration and Poverty Dynamic Analysis Using a Bayesian Approach: The Tunisian Case
Authors: Amal Jmaii, Damien Rousseliere, Besma Belhadj
Abstract:
We explore the relationship between internal migration and poverty in Tunisia. We present a methodology combining potential outcomes approach with multiple imputation to highlight the effect of internal migration on poverty states. We find that probability of being poor decreases when leaving the poorest regions (the west areas) to the richer regions (greater Tunis and the east regions).Keywords: internal migration, potential outcomes approach, poverty dynamics, Tunisia
Procedia PDF Downloads 31211385 Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery
Authors: Pritika Ramharack, Mahmoud E. S. Soliman
Abstract:
The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.Keywords: NS5 protein inhibitors, per-residue decomposition, pharmacophore model, virtual screening, Zika virus
Procedia PDF Downloads 22911384 In vitro Evaluation of Prebiotic Potential of Wheat Germ
Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado
Abstract:
Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.Keywords: by-products, functional ingredients, prebiotic potential, wheat germ
Procedia PDF Downloads 48811383 Analysis of Earthquake Potential and Shock Level Scenarios in South Sulawesi
Authors: Takhul Bakhtiar
Abstract:
In South Sulawesi Province, there is an active Walanae Fault causing this area to frequently experience earthquakes. This study aims to determine the level of seismicity of the earthquake in order to obtain the potential for earthquakes in the future. The estimation of the potential for earthquakes is then made a scenario model determine the estimated level of shocks as an effort to mitigate earthquake disasters in the region. The method used in this study is the Gutenberg Richter Method through the statistical likelihood approach. This study used earthquake data in the South Sulawesi region in 1972 - 2022. The research location is located at the coordinates of 3.5° – 5.5° South Latitude and 119.5° – 120.5° East Longitude and divided into two segments, namely the northern segment at the coordinates of 3.5° – 4.5° South Latitude and 119,5° – 120,5° East Longitude then the southern segment with coordinates of 4.5° – 5.5° South Latitude and 119,5° – 120.5° East Longitude. This study uses earthquake parameters with a magnitude > 1 and a depth < 50 km. The results of the analysis show that the potential for earthquakes in the next ten years with a magnitude of M = 7 in the northern segment is estimated at 98.81% with an estimated shock level of VI-VII MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng then IV - V MMI in the cities of Bulukumba, Selayar, Makassar and Gowa. In the southern segment, the potential for earthquakes in the next ten years with a magnitude of M = 7 is estimated at 32.89% with an estimated VI-VII MMI shock level in the cities of Bulukumba, Selayar, Makassar and Gowa, then III-IV MMI around the cities of Pare-Pare, Barru, Pinrang and Soppeng.Keywords: Gutenberg Richter, likelihood method, seismicity, shakemap and MMI scale
Procedia PDF Downloads 12011382 Evaluation of Antimicrobial Activity of Different Dithiolethiones
Authors: Zehour Rahmani, Messouda Dekmouche, Mohamed Hadjadj, Mokhtar Saidi
Abstract:
In the last decades of the nineteenth century, the study of disease – causing microorganisms became concentrated on bacteria and largely institutionalized. In earlier years, the scientists interested in bacteria had originally been chemists like Pasteur, physicists like Tyndall, or botanists like Cohn and ward. For this reason, the objective of this research was to evaluate the potential of some dithiolethiones on standard microorganism strains as well as multi-drug resistant bacteria, which were isolated from hospitals. Recent studies have demonstrated, that several dithiolethione compounds, particularly (3H-1,2-dithiole-3-thione), exhibit the biological activities against several bacteria.Keywords: bacteria, dithiolethiones, microorganism, potential
Procedia PDF Downloads 32011381 Elastoplastic Modified Stillinger Weber-Potential Based Discretized Virtual Internal Bond and Its Application to the Dynamic Fracture Propagation
Authors: Dina Kon Mushid, Kabutakapua Kakanda, Dibu Dave Mbako
Abstract:
The failure of material usually involves elastoplastic deformation and fracturing. Continuum mechanics can effectively deal with plastic deformation by using a yield function and the flow rule. At the same time, it has some limitations in dealing with the fracture problem since it is a theory based on the continuous field hypothesis. The lattice model can simulate the fracture problem very well, but it is inadequate for dealing with plastic deformation. Based on the discretized virtual internal bond model (DVIB), this paper proposes a lattice model that can account for plasticity. DVIB is a lattice method that considers material to comprise bond cells. Each bond cell may have any geometry with a finite number of bonds. The two-body or multi-body potential can characterize the strain energy of a bond cell. The two-body potential leads to the fixed Poisson ratio, while the multi-body potential can overcome the limitation of the fixed Poisson ratio. In the present paper, the modified Stillinger-Weber (SW), a multi-body potential, is employed to characterize the bond cell energy. The SW potential is composed of two parts. One part is the two-body potential that describes the interatomic interactions between particles. Another is the three-body potential that represents the bond angle interactions between particles. Because the SW interaction can represent the bond stretch and bond angle contribution, the SW potential-based DVIB (SW-DVIB) can represent the various Poisson ratios. To embed the plasticity in the SW-DVIB, the plasticity is considered in the two-body part of the SW potential. It is done by reducing the bond stiffness to a lower level once the bond reaches the yielding point. While before the bond reaches the yielding point, the bond is elastic. When the bond deformation exceeds the yielding point, the bond stiffness is softened to a lower value. When unloaded, irreversible deformation occurs. With the bond length increasing to a critical value, termed the failure bond length, the bond fails. The critical failure bond length is related to the cell size and the macro fracture energy. By this means, the fracture energy is conserved so that the cell size sensitivity problem is relieved to a great extent. In addition, the plasticity and the fracture are also unified at the bond level. To make the DVIB able to simulate different Poisson ratios, the three-body part of the SW potential is kept elasto-brittle. The bond angle can bear the moment before the bond angle increment is smaller than a critical value. By this method, the SW-DVIB can simulate the plastic deformation and the fracturing process of material with various Poisson ratios. The elastoplastic SW-DVIB is used to simulate the plastic deformation of a material, the plastic fracturing process, and the tunnel plastic deformation. It has been shown that the current SW-DVIB method is straightforward in simulating both elastoplastic deformation and plastic fracture.Keywords: lattice model, discretized virtual internal bond, elastoplastic deformation, fracture, modified stillinger-weber potential
Procedia PDF Downloads 9811380 Estimating City-Level Rooftop Rainwater Harvesting Potential with a Focus on Sustainability
Authors: Priya Madhuri P., Kamini J., Jayanthi S. C.
Abstract:
Rooftop rainwater harvesting is a crucial practice to address water scarcity, pollution, and flooding. This study aims to estimate the rooftop rainwater harvesting potential (RRWHP) for Suryapet, India, using building footprint data and average rainfall data. The study uses rainfall grids from the India Meteorological Department and Very High Resolution Satellite data to capture building footprints and calculate the RRWHP for a five-year period (2015-2020). Buildings with an area of more than 20 square meters are considered. A conservative figure of 60% efficiency for the catchment area is considered. The study chose 31,770 buildings with an effective rooftop area of around 1.56 sq. km. The city experiences annual rainfall values ranging from 791 mm to 987 mm, with August being the wettest month. The projected annual rooftop rainwater harvesting potential is 1.3 billion litres.Keywords: buildings, rooftop rainwater harvesting, sustainable water management, urban
Procedia PDF Downloads 3811379 The Discriminate Analysis and Relevant Model for Mapping Export Potential
Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban
Abstract:
There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.Keywords: export strategy, modeling export, calibration, export promotion
Procedia PDF Downloads 49811378 Resistance Analysis for a Trimaran
Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa
Abstract:
Importance has been given to resistance analysis for various types of vessels; however explicit guidelines applied to multihull vessels have not been clearly defined. The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes positioning, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. A vessel has the potential to experience less resistance, at a particular range of speeds, for a vast selection of hull positioning. Many potential layouts create opportunities of various design for both the commercial and leisure market.Keywords: multihull, reistance, trimaran, vessels
Procedia PDF Downloads 47811377 Assessment of Rainfall Erosivity, Comparison among Methods: Case of Kakheti, Georgia
Authors: Mariam Tsitsagi, Ana Berdzenishvili
Abstract:
Rainfall intensity change is one of the main indicators of climate change. It has a great influence on agriculture as one of the main factors causing soil erosion. Splash and sheet erosion are one of the most prevalence and harmful for agriculture. It is invisible for an eye at first stage, but the process will gradually move to stream cutting erosion. Our study provides the assessment of rainfall erosivity potential with the use of modern research methods in Kakheti region. The region is the major provider of wheat and wine in the country. Kakheti is located in the eastern part of Georgia and characterized quite a variety of natural conditions. The climate is dry subtropical. For assessment of the exact rate of rainfall erosion potential several year data of rainfall with short intervals are needed. Unfortunately, from 250 active metro stations running during the Soviet period only 55 of them are active now and 5 stations in Kakheti region respectively. Since 1936 we had data on rainfall intensity in this region, and rainfall erosive potential is assessed, in some old papers, but since 1990 we have no data about this factor, which in turn is a necessary parameter for determining the rainfall erosivity potential. On the other hand, researchers and local communities suppose that rainfall intensity has been changing and the number of haily days has also been increasing. However, finding a method that will allow us to determine rainfall erosivity potential as accurate as possible in Kakheti region is very important. The study period was divided into three sections: 1936-1963; 1963-1990 and 1990-2015. Rainfall erosivity potential was determined by the scientific literature and old meteorological stations’ data for the first two periods. And it is known that in eastern Georgia, at the boundary between steppe and forest zones, rainfall erosivity in 1963-1990 was 20-75% higher than that in 1936-1963. As for the third period (1990-2015), for which we do not have data of rainfall intensity. There are a variety of studies, where alternative ways of calculating the rainfall erosivity potential based on lack of data are discussed e.g.based on daily rainfall data, average annual rainfall data and the elevation of the area, etc. It should be noted that these methods give us a totally different results in case of different climatic conditions and sometimes huge errors in some cases. Three of the most common methods were selected for our research. Each of them was tested for the first two sections of the study period. According to the outcomes more suitable method for regional climatic conditions was selected, and after that, we determined rainfall erosivity potential for the third section of our study period with use of the most successful method. Outcome data like attribute tables and graphs was specially linked to the database of Kakheti, and appropriate thematic maps were created. The results allowed us to analyze the rainfall erosivity potential changes from 1936 to the present and make the future prospect. We have successfully implemented a method which can also be use for some another region of Georgia.Keywords: erosivity potential, Georgia, GIS, Kakheti, rainfall
Procedia PDF Downloads 22511376 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field
Authors: Aijuka Nicholas
Abstract:
A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones
Procedia PDF Downloads 14711375 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 9411374 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.Keywords: characteristic equation, interface waves, potential function, Stoneley waves, wave structure
Procedia PDF Downloads 32011373 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran
Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand
Abstract:
Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.Keywords: fractal, Gavkhouni, microform, Iran
Procedia PDF Downloads 27111372 Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films
Authors: S. Kaci, A. Keffous, O. Fellahi, I. Bozetine, H. Menari
Abstract:
In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light.Keywords: lead sulfide, nanostructures, photo-conversion, thin films
Procedia PDF Downloads 36211371 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles
Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost
Abstract:
This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants
Procedia PDF Downloads 19211370 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 45811369 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift
Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro
Abstract:
In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential
Procedia PDF Downloads 7911368 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability
Authors: Xvelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.Keywords: space under bridge, potential evaluation, high density urban area, updated using
Procedia PDF Downloads 7811367 Bacillus licheniformis sp. nov. PS-6, an Arsenic Tolerance Bacterium with Biotransforming Potential Isolated from Sediments of Pichavaram Mangroves of South India
Authors: Padmanabhan D, Kavitha S
Abstract:
The purpose of the study is to investigate arsenic resistance ability of indigenous microflora and its ability to utilize arsenic species form containing water source. PS-6 potential arsenic tolerance bacterium was screened from thirty isolates from Pichavaram Mangroves of India having tolerance to grow up to 1000 mg/l of As (V) and 800 mg/l of As (III) and arsenic utilization ability of 98 % of As (V) and 97% of As (III) with initial concentration of 3-5 mg/l within 48 hrs. Optimum pH and temperature was found to be ~7-7.4 and 37°C. Active growth of PS-6 in minimal salt media (MSB) helps in cost effective biomass production. Dry weight analysis of PS-6 has shown significant difference in biomass when exposed to As (III) and As (V). Protein level study of PS-6 after exposing to As (V) and As (III) shown modification in total protein concentration and variation in SDS-PAGE pattern. PS-6 was identified as Bacillus licheniformis based on partially sequenced of 16S rRNA using NCBI Blast. Further investigation will help in using this potential bacterium as a well-grounded source for urgency.Keywords: arsenite, arsenate, Bacillus licheniformis, utilization
Procedia PDF Downloads 40611366 The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method
Authors: Mahdiyeh Gholaminezhad
Abstract:
Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation.Keywords: liver cancer, sorafenib, SOAT1, molecular docking
Procedia PDF Downloads 2811365 Exploring the Potential of Blockchain to Improve Higher Education
Authors: Tony Cripps, Larry Kimber
Abstract:
This paper will begin by briefly explaining how blockchain technology works. Then, after highlighting a few of the ways it promises to heavily impact all aspects of the digital landscape, the focus will shift to Blockchain in the field of education, with specific emphasis placed on practical applications in foreign language education. Blockchain is a decentralized Internet-based software application that guarantees truth in transactions. This means whenever two parties engage in a transaction using Blockchain, it is time-stamped, added to a block of other transactions, and then permanently attached to an unalterable ‘chain’ of blocks. The potential for developing applications with Blockchain is therefore immense, since software systems that ensure the impossibility of outside tampering are invaluable. Innovative ideas in every imaginable domain are presently being entertained and Blockchain in education is no exception. For instance, records kept within and between institutions of students’ grade performance, academic achievement and verification of assignment/course completion are just a few examples of how this new technology might potentially be used to revolutionize education. It is hoped that this paper will be of use to all educators interested in the application of technology in the field of education.Keywords: blockchain, disruption, potential, technology
Procedia PDF Downloads 13811364 The Rupture Potential of Nerve Tissue Constrained Intracranial Saccular Aneurysm
Authors: M. Alam, P. Seshaiyer
Abstract:
The rupture predictability of intracranial aneurysm is one of the most important parameters for physicians in surgical treatment. As most of the intracranial aneurysms are asymptomatic, still the rupture potential of both symptomatic and asymptomatic lesions is relatively unknown. Moreover, an intracranial aneurysm constrained by a nerve tissue might be a common scenario for a physician to deal with during the treatment process. Here, we perform a computational modeling of nerve tissue constrained intracranial saccular aneurysm to show a protective role of constrained tissue on the aneurysm. A comparative parametric study of the model also performs taking long constraint, medium constraint, short constraint, point contact, narrow neck aneurysm, wide neck aneurysm as parameters for the analysis. Results show that contact constraint aneurysm generates less stress near the fundus compared to no constraint aneurysm, hence works as a protective wall for the aneurysm not to be ruptured.Keywords: rupture potential, intracranial saccular aneurysm, anisotropic hyper-elastic material, finite element analysis
Procedia PDF Downloads 21111363 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa
Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke
Abstract:
The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.Keywords: characterization, land capability, land evaluation, land potential
Procedia PDF Downloads 19911362 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 27411361 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer
Procedia PDF Downloads 21211360 Innovative Method for Treating Oil-Produced Water with Low Operating Cost
Authors: Maha Salman, Gada Al-Nuwaibit, Ahmed Al-Haji, Saleh Al-Haddad, Abbas Al-Mesri, Mansour Al-Rugeeb
Abstract:
The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost.Keywords: brine water, oil-produced water, scaling potential, Sulaibiyah waste water and reclaminatin plant
Procedia PDF Downloads 44711359 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee
Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado
Abstract:
Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses
Procedia PDF Downloads 38