Search results for: materials science
8882 Gendering Science, Technology and Innovation: The Case of R&D in Turkey
Authors: Setenay Nil Doğan, Ece Oztan
Abstract:
Research and development (R&D) as a term denotes the innovative studies conducted systematically to increase knowledge and its practices. As R&D intensity of Turkey (0,84%) is quite below the EU average intensity score, it has displayed a continuous increase since the 2000s. Also, the development of human capital in R&D has been one of the basic aims of National Strategy of Science, Technology, and Innovation, and National Innovation System 2023 of Turkey. R&D is considered to one of the fields in which the gender gap is wide. The reflections of the analogy of leaky pipeline, a term used for vertical differentiation in academy can also be observed in those scientific activities related with the private sector. In the private sector, the gender gap becomes wider: the percentage of female researchers in the universities (41%) decreases to 24% in the private sector. Though half of the undergraduates and gradutes are female in Turkey, a widening gender gap is observed in terms of employment in R&D. Given this background, this paper will focus on gendered dynamics of careers in R&D through the interviews conducted with 25 female and 25 male employees, working in a university technopark and some of the large RD centers in Turkey working in several sectors such as electronics, automotive etc. Focusing on some aspects of gender differences in terms of career experiences in R&D and innovation, mobility, participation to the projects, patents and inclusion to other innovatory activities, home-work balance, it aims to explore the relationships between science, technology, innovation and gender.Keywords: gender, innovation, R&D, science, technology
Procedia PDF Downloads 4418881 Finite Element Analysis of Dental Implant for Prosthesis
Authors: Mayur Chaudhari, Ashutosh Gaikwad, Shubham Kavathale, Aditya Mule, Dilip Panchal, Puja Verma
Abstract:
The purpose of this investigation was to locate restorative bio-materials for the manufacture of implants and crowns. A three-dimensional (3D) finite element analysis (FEA) was carried out to evaluate the stress distribution in the implant and abutment with several types of bio-materials and various prosthetic crowns. While the dental implant, abutment, and screw were subjected to a vertical impact force, the effects of mechanical characteristics such as Young's modulus and Poisson's ratio were evaluated and contrasted. Crowns are made from zirconia, cobalt, ceramic, acrylic resin, and porcelain materials. Implants are made from materials such as titanium, zirconia, PEEK, and CFR-PEEK. SolidWorks was used to create the 3D geometry, and Ansys Software was used to analyze it. The results show that using CFR-PEEK implants and an acrylic resin crown resulted in less bone stress than using alternative materials. In order to reduce the amount of stress on the bone and possibly prevent implant failure, the study's findings support the use of a CFR PEEK implant, abutment, and crown in bruxism patients.Keywords: biomaterials, implant, crown, abutment
Procedia PDF Downloads 608880 Extent of Constructivist Learning in Science Classes of the College Department of Southville International School and Colleges: Implication to Effective College Teaching
Authors: Mark Edward S. Paulo
Abstract:
This study was conducted to determine the extent of constructivist learning in science classes of the college department of Southville International School and Colleges. This explores the students’ assessment of their learning when professors would give lecture and various activities in the classroom and at the same time their perception on how their professors maintain a constructivist learning environment. In this study, a total of 185 students participated. These students were enrolled in Science courses offered in the first semester of AY 2014 to 2015. Descriptive correlational method was used in this study while simple random sampling technique was utilized in getting the number of target population. The results revealed that student often observed that their professors apply constructivist approach when teaching sciences. A positive correlation was found between students’ level of learning and extent of constructivism.Keywords: college teaching, constructivism, pedagogy, student-centered approach
Procedia PDF Downloads 2518879 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams
Authors: Rochelle Elva
Abstract:
Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of learning and mastery of skills. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation, and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy Value Theory and Motivation Theory to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected possible path to success that continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were, on average, one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.Keywords: expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science
Procedia PDF Downloads 818878 Effects of Sensory Integration Techniques in Science Education of Autistic Students
Authors: Joanna Estkowska
Abstract:
Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs
Procedia PDF Downloads 1928877 Analyzing Sociocultural Factors Shaping Architects’ Construction Material Choices: The Case of Jordan
Authors: Maiss Razem
Abstract:
The construction sector is considered a major consumer of materials that undergoes processes of extraction, processing, transportation, and maintaining when used in buildings. Several metrics have been devised to capture the environmental impact of the materials consumed during construction using lifecycle thinking. Rarely has the materiality of this sector been explored qualitatively and systemically. This paper aims to explore socio-cultural forces that drive the use of certain materials in the Jordanian construction industry, using practice theory as a heuristic method of analysis, more specifically Shove et al. three-element model. By conducting semi-structured interviews with architects, the results unravel contextually embedded routines when determining qualities of three materialities highlighted herein; stone, glass and spatial openness. The study highlights the inadequacy of only using efficiency as a quantitative metric of sustainable materials and argues for the need to link material consumption with socio-economic, cultural, and aesthetic driving forces. The operationalization of practice theory by tracing materials’ lifetimes as they integrate with competencies and meanings captures dynamic engagements through the analyzed routines of actors in the construction practice. This study can offer policymakers better-nuanced representation to green this sector beyond efficiency rhetoric and quantitative metrics.Keywords: architects' practices, construction materials, Jordan, practice theory
Procedia PDF Downloads 1698876 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites
Authors: G. L. Devnani, Shishir Sinha
Abstract:
In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.Keywords: alkaline treatment, composites, natural fiber, water absorption
Procedia PDF Downloads 2878875 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls
Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan
Abstract:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder
Procedia PDF Downloads 1838874 Fifth Grade Student Skills of Reading Illustrated Drawings in Physical and Chemical Changes Included in Science Textbook
Authors: Sozan H. Omar, Lina L. Al-Rewaili
Abstract:
The current study aimed to measure the fifth Grade student skills of reading illustrates in physical and chemical chapter included in science textbook, as well as identity the tasks the dispersants related to designing these illustrates which obstruct the students to read them properly. The researcher applied the test instrument of open discuss questions to measure the skill of: recognizing, description, interpretation and assessment for a sample of this research consisted of (269) students who read three illustrates, and conduct an interview with sample of them (27) students to recognize the dispersants related to designing of these illustrates. The study results showed that there are poor levels in illustrated drawing reading skills: description, interpretation, and assessment. The most important dispersants which obstruct the students to read theses illustrates properly representing: Art impacts of these illustrates, there are some elements which don’t serve these illustrates. In the light of the above results, the researcher provided some recommendations such as training the students on using the images and illustrates properly in science textbooks, as well as create simple designs of illustrates and they should be free of crowded elements and impacts which don’t serve the illustrates.Keywords: reading illustrated drawings skills, fifth grade science, physical and chemical changes
Procedia PDF Downloads 3748873 Analysis of the Topics of Research of Brazilian Researchers Acting in the Areas of Engineering
Authors: Jether Gomes, Thiago M. R. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and diffusion of these. In view of this, researchers from several areas of knowledge have carried out several studies on scientific production data in order to analyze phenomena and trends about science. The understanding of how research has evolved can, for example, serve as a basis for building scientific policies for further advances in science and stimulating research groups to become more productive. In this context, the objective of this work is to analyze the main research topics investigated along the trajectory of the Brazilian science of researchers working in the areas of engineering, in order to map scientific knowledge and identify topics in highlights. To this end, studies are carried out on the frequency and relationship of the keywords of the set of scientific articles registered in the existing curricula in the Lattes Platform of each one of the selected researchers, counting with the aid of bibliometric analysis features.Keywords: research topics, bibliometrics, topics of interest, Lattes Platform
Procedia PDF Downloads 2218872 Raising the Property Provisions of the Topographic Located near the Locality of Gircov, Romania
Authors: Carmen Georgeta Dumitrache
Abstract:
Measurements of terrestrial science aims to study the totality of operations and computing, which are carried out for the purposes of representation on the plan or map of the land surface in a specific cartographic projection and topographic scale. With the development of society, the metrics have evolved, and they land, being dependent on the achievement of a goal-bound utility of economic activity and of a scientific purpose related to determining the form and dimensions of the Earth. For measurements in the field, data processing and proper representation on drawings and maps of planimetry and landform of the land, using topographic and geodesic instruments, calculation and graphical reporting, which requires a knowledge of theoretical and practical concepts from different areas of science and technology. In order to use properly in practice, topographical and geodetic instruments designed to measure precise angles and distances are required knowledge of geometric optics, precision mechanics, the strength of materials, and more. For processing, the results from field measurements are necessary for calculation methods, based on notions of geometry, trigonometry, algebra, mathematical analysis and computer science. To be able to illustrate topographic measurements was established for the lifting of property located near the locality of Gircov, Romania. We determine this total surface of the plan (T30), parcel/plot, but also in the field trace the coordinates of a parcel. The purpose of the removal of the planimetric consisted of: the exact determination of the bounding surface; analytical calculation of the surface; comparing the surface determined with the one registered in the documents produced; drawing up a plan of location and delineation with closeness and distance contour, as well as highlighting the parcels comprising this property; drawing up a plan of location and delineation with closeness and distance contour for a parcel from Dave; in the field trace outline of plot points from the previous point. The ultimate goal of this work was to determine and represent the surface, but also to tear off a plot of the surface total, while respecting the first surface condition imposed by the Act of the beneficiary's property.Keywords: topography, surface, coordinate, modeling
Procedia PDF Downloads 2588871 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement
Authors: Haibin Zhou, Pingping Yao, Kunyang Fan
Abstract:
Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism
Procedia PDF Downloads 2798870 Study of the Effect of Using Corn-Cob Ash on Mortar and Concrete Properties: Case Study of Sudan
Authors: Taghried I. M. Abdel-Magid, Gheida T. A. Al-Khelifa, Ahmed O. Adam, Esra G. A. Mohamed, Saeed M. S. Saeed
Abstract:
The use of pozzolanic materials in concrete industry is facing challenges due to unpredictable behavior of natural materials. Corncob ash (CCA) is considered to be one of the promising plant-based materials that possess cementitious properties. Corn is one of the major planted crops in Sudan. Corncob is considered as waste and normally thrown away or burnt. The main purpose of this research was to test the hypothesis that CCA can sufficiently replace cement in a concrete mixture or a cement mortar. In this study, CCA was used to replace cement in mortar in three percentages: 0, 20, and 25%. The effect of this replacement was found to be positive in terms of long-term compressive strength, while not as such in short-term compressive strength. In the concrete mix, the introduction of CCA was found to have a positive impact on the slump test characteristics, whereas the early and late compressive strengths deteriorated by approximately 30%. More research is needed in this area to upgrade the efficient use of CCA in cement mortar and concrete properties.Keywords: cementitious materials, compressive strength, corncob ash, pozzolanic materials
Procedia PDF Downloads 2408869 Synthesis and Characterizations of Lead-free BaO-Doped TeZnCaB Glass Systems for Radiation Shielding Applications
Authors: Rezaul K. Sk., Mohammad Ashiq, Avinash K. Srivastava
Abstract:
The use of radiation shielding technology ranging from EMI to high energy gamma rays in various areas such as devices, medical science, defense, nuclear power plants, medical diagnostics etc. is increasing all over the world. However, exposure to different radiations such as X-ray, gamma ray, neutrons and EMI above the permissible limits is harmful to living beings, the environment and sensitive laboratory equipment. In order to solve this problem, there is a need to develop effective radiation shielding materials. Conventionally, lead and lead-based materials are used in making shielding materials, as lead is cheap, dense and provides very effective shielding to radiation. However, the problem associated with the use of lead is its toxic nature and carcinogenic. So, to overcome these drawbacks, there is a great need for lead-free radiation shielding materials and that should also be economically sustainable. Therefore, it is necessary to look for the synthesis of radiation-shielding glass by using other heavy metal oxides (HMO) instead of lead. The lead-free BaO-doped TeZnCaB glass systems have been synthesized by the traditional melt-quenching method. X-ray diffraction analysis confirmed the glassy nature of the synthesized samples. The densities of the developed glass samples were increased by doping the BaO concentration, ranging from 4.292 to 4.725 g/cm3. The vibrational and bending modes of the BaO-doped glass samples were analyzed by Raman spectroscopy, and FTIR (Fourier-transform infrared spectroscopy) was performed to study the functional group present in the samples. UV-visible characterization revealed the significance of optical parameters such as Urbach’s energy, refractive index and optical energy band gap. The indirect and direct energy band gaps were decreased with the BaO concentration whereas the refractive index was increased. X-ray attenuation measurements were performed to determine the radiation shielding parameters such as linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), attenuation factor (Att%) and lead equivalent thickness of the lead-free BaO-doped TeZnCaB glass system. It was observed that the radiation shielding characteristics were enhanced with the addition of BaO content in the TeZnCaB glass samples. The glass samples with higher contents of BaO have the best attenuation performance. So, it could be concluded that the addition of BaO into TeZnCaB glass samples is a significant technique to improve the radiation shielding performance of the glass samples. The best lead equivalent thickness was 2.626 mm, and these glasses could be good materials for medical diagnostics applications.Keywords: heavy metal oxides, lead-free, melt-quenching method, x-ray attenuation
Procedia PDF Downloads 318868 Mega Development Projects Problems and Challenges From a Social Science Perspective: A Critical Review
Authors: Shakir Ullah
Abstract:
This article reviews social science understanding to explore the challenges megaprojects face before and after implementation. It also sheds light on the problems directly and indirectly caused by mega development projects in the project implemented areas. By Using a qualitative approach such as thematic analysis, the article uses recent literature such as published articles, government reports, and books to cite examples of different mega projects worldwide. The study report that mega development projects are a necessary element of the modern-day infrastructural development process as they represent the perfect example of urban socioeconomic development. They are introduced and implemented by multinational companies with the support of state authorities to produce the common good. However, they are not devoid of their critical challenges and bring implicit and explicit problems to the targeted localities. The article takes insights from social science research for suggestions on how to reduce the challenges faced by project implementers and problems received by local people due to the fault lines of such projects.Keywords: development, mega-projects, challenges, problems
Procedia PDF Downloads 1038867 Embedding Employability Skills in Computer and Information Science Program Curriculum
Authors: Nadezda Pizika
Abstract:
The paper discusses possible approaches of embedding the development of employability skills in the program curriculum. This paper contains analysis of the problem areas raised by employers regarding new graduates’ readiness to join workforce, the ways of possible improvements, and the actions required from different stakeholders. The case discussed in the paper is related to Computer and Information Science (CIS) Program offered at Higher Colleges of Technology (UAE).Keywords: curriculum design, employability skills, employers, graduates, education, entrepreneurship
Procedia PDF Downloads 3258866 Recovery of Local Materials in Pavements in Areas with an Arid Climate
Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane
Abstract:
The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.Keywords: compaction, low water content, sand, natural materials
Procedia PDF Downloads 1218865 Mineral Thermal Insulation Materials Based on Sodium Liquid Glass
Authors: Zin Min Htet, Tikhomirova Irina Nikolaevna, Karpenko Marina A.
Abstract:
In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel.Keywords: thermal insulation material, sodium liquid glass, foam glass granules, foaming agent, hardener, thermal conductivity, apparent density, compressive strength
Procedia PDF Downloads 1908864 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials
Authors: M. Muneer, Waseem Raza
Abstract:
Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials
Procedia PDF Downloads 4348863 Diagonal Crack Width of RC Members with High Strength Materials
Authors: J. Y. Lee, H. S. Lim, S. H. Yoon
Abstract:
This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior
Procedia PDF Downloads 3098862 The Relationship Between Artificial Intelligence, Data Science, and Privacy
Authors: M. Naidoo
Abstract:
Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.Keywords: artificial intelligence, data science, law, policy
Procedia PDF Downloads 1068861 Recycled Use of Solid Wastes in Building Material: A Review
Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib
Abstract:
Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.Keywords: recycling, solid wastes, construction, building materials
Procedia PDF Downloads 3858860 Engaging Students in Multimedia Constructivist Learning: Analysis of Students' Science Achievement
Authors: Maria Georgiou
Abstract:
This study examined whether there was a statistically significant difference between pretest and posttest achievement scores for students who received multimedia-based instructions in science. The paired samples t-test was used to address the research question and to establish whether there was a significant difference between pretest and posttest scores that may have occurred based on the students’ learning experience with multimedia technology. Findings indicated that there was a significant difference in students’ achievement scores before and after a multimedia-based instruction. Students’ achievement scores were increased by approximately two points, after students received multimedia-based instruction. On a paired samples t-test, a high level of significance was found, p = 0.000. Opportunities to learn with multimedia are more likely to result in sustained improvements in student achievement and a deeper understanding of science content. Multimedia can make learning more active and student-centered and activate student motivation.Keywords: constructivist learning, hyperstudio, multimedia, multimedia-based instruction
Procedia PDF Downloads 1628859 The Effectiveness of Gamified Learning on Student Learning in Computer Science Education: A Systematic Review (2010-2018)
Authors: Shurui Bai, Biyun Huang, Khe Foon Hew
Abstract:
Gamification is defined as the use of game design elements in non-game contexts. The primary purpose of using gamification in an educational context is to engage students in school activities such that their likelihood of completion is increased. But how actually effective is gamification in improving student learning? In order to answer this question, this paper provides a systematic review of prior research studies on gamification in K-12 and university contexts limited to computer science discipline. Unlike other published gamification review works, we specifically analyzed comparison-based studies in quasi-experiment, historical control, and randomization rather than studies with mere anecdotal or phenomenological results. The main purpose for this is to discuss possible causal effects of gamified practices on student performance, behavior change, and perceptual skills following an integrative model. Implications for practice are discussed, along with several suggestions for future research studies.Keywords: computer science, gamification, learning performance, systematic review
Procedia PDF Downloads 1318858 Teaching Environment and Instructional Materials on Students’ Performance in English Language: Implications for Counselling
Authors: Rosemary Saidu, Taiyelolu Martins Ogunjirin
Abstract:
The study examines the teaching environment and instructional materials on the performance of students in the English Language in selected secondary schools in Ogun State and its implication for counselling. Two research questions guided the study were developed. The study adopted a descriptive survey design. A multi-stage sampling technique was employed for the study. Samples of 100 students of Senior Secondary School Two (SSS11) were drawn. Purposive sampling technique was to select the five schools. Additionally, the instruments known as Teaching Environment and Instructional Materials on Students Performance in English Inventory (TEIMEI) and Student Achievement Scores (SAS) were used to elicit information. Thereafter, inferential statistics and the non-parametric chi-square statistics at 0.05 alpha levels and 3 degree of freedom were adopted as analytical tools. From the study, it was discovered among others that teaching environment and instructional materials significantly contributed to the performance of students in the English language. From the findings, it was recommended that among others functional language laboratory in the schools, counselors to regularly give guidance talk on the importance of the subject.Keywords: performance, English language, teaching environment, instructional materials
Procedia PDF Downloads 1588857 Minimization of Seepage in Sandy Soil Using Different Grouting Types
Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour
Abstract:
One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.Keywords: seepage, sandy soil, grouting, permeability
Procedia PDF Downloads 3688856 Seasonal Stirred Variations in Chemical Composition and Antifungal Activity of Medicinal Plants Turraea holstii and Clausena anisata
Authors: Francis Machumi, Ester Innocent, Pius Yanda, Philip C. Stevenson
Abstract:
Curative dependence of traditionally used medicinal plants on season of harvest is an alleged claim by traditional health practitioners. This study intended to verify these claims by investigating antifungal activity and chemical composition of traditionally used medicinal plants Turraea holstii and Clausena anisata harvested in rainy season and dry season. The antifungal activities were determined by broth microdilution method whereas chemical profiling of the extracts from the plant materials was done by gas chromatography (GC). Results indicated that extracts of plant materials harvested in dry season showed enhanced antifungal activity as compared to extracts of plant materials harvested in rainy season. GC chromatograms showed overalls increase in number and amount of chemical species for extracts of plant materials harvested in dry season as compared to extracts of plant materials harvested in rainy season.Keywords: antifungal activity, chemical composition, medicinal plants, seasonal dependence
Procedia PDF Downloads 4258855 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes
Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath
Abstract:
Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.Keywords: digital, computer organization, ABET, structured enquiry, course activity
Procedia PDF Downloads 5018854 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry
Authors: Maryam Kiani
Abstract:
The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.Keywords: 2D materials, geopolymers, electrical properties, self-sensing
Procedia PDF Downloads 1328853 Fabrication of Textile-Based Radio Frequency Metasurfaces
Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu
Abstract:
Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.Keywords: electronic textiles, metasurface, printed electronics, flexible
Procedia PDF Downloads 195