Search results for: magnesium substitution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 746

Search results for: magnesium substitution

356 Evidence-Based Investigation of the Phonology of Nigerian Instant Messaging

Authors: Emmanuel Uba, Lily Chimuanya, Maryam Tar

Abstract:

Orthographic engineering is no longer the preserve of the Short Messaging Service (SMS), which is characterised by limited space. Such stylistic creativity or deviation is fast creeping into real-time messaging, popularly known as Instant Messaging (IM), despite the large number of characters allowed. This occurs at various linguistic levels: phonology, morphology, syntax, etc. Nigerians are not immune to this linguistic stylisation. This study investigates the phonological and meta-phonological conventions of the messages sent and received via WhatsApp by Nigerian graduates. This is ontological study of 250 instant messages collected from 98 graduates from different ethnic groups in Nigeria. The selection and analysis of the messages are based on figure and ground principle. The results reveal the use of accent stylisation, phoneme substitution, blending, consonantisation (a specialised form of deletion targeting vowels), numerophony (using a figure/number, usually 1-10, to represent a word or syllable that has the same sound) and phonetic respelling in the IMs sent by Nigerians. The study confirms the existence of linguistic creativity.

Keywords: figure and ground principle, instant messaging, linguistic stylisation, meta-phonology

Procedia PDF Downloads 381
355 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 107
354 QSAR and Anti-Depressant Studies of Some Novel Phenothiazine Derivatives

Authors: D. L. Tambe, S. Dighe Nachiket

Abstract:

Objective: Depression is a common but serious illness and the phenothiazine derivatives shows prominent effect against the depression hence work was undertaken to validate this use scientifically. Material and Methods: Synthesis of phenothiazine derivatives are done by the substitution of various groups, but the basic scheme of synthesis is started with synthesis of 4-(Cyclohexylidene) Benzoic acid using PABA. After that with the further six step of synthesis of 3-(10H-phenothiazin-2-yl)-N, 5-diphenyl-4H-1, 2, 4-triazol-4-amine is done which is final product. Antidepressant activity of all the synthesized compounds was evaluated by despair swim test by using Sprague Dawley Rats. Standard drug imipramine was used as the control. In the despair swim test, all the synthesized derivatives showed antidepressant activity. Results: Among the all phenothiazine derivatives four compounds (6.6-7.2 (14H –phenyl ), 9.43 (1H OH), 8.50 (1H NH phenothiazine),6.85-8.21(14H phenyl), 8.50 (1H NH phenothiazine), 11.82 (1H – OH), 6.6-7.2 (8H –phenyl ), 9.43 (1H OH), 8.50 (1H NH phenothiazine), 4.2 (1H NH) and 6.85-8.21(8H phenyl), 8.50 (1H NH phenothiazine), 3.9 (1H NH) 11.82 (1H – OH) showed significant antidepressant activity comparing with control drug imipramine. Conclusion: Various Novel phenothiazine derivatives show more potent antidepressant activity and it plays more beneficial role in human health for the treatment of depression.

Keywords: antidepressant activities, despair swim test, phenothiazine, Sprague Dawley Rats

Procedia PDF Downloads 372
353 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 225
352 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 222
351 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 658
350 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 128
349 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 267
348 Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites

Authors: Steven Ploetz, Andreas Lohmueller, Robert F. Singer

Abstract:

The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength.

Keywords: aluminum matrix composites, boron carbide, stiffness, stir casting

Procedia PDF Downloads 300
347 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 128
346 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 325
345 Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index

Authors: Samaneh Abolli, Mahdi Ahmadi Nasab, Kamyar Yaghmaeian, Mahmood Alimohammadi

Abstract:

The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺.

Keywords: water quality index, groundwater, chloride, GIS, Garmsar

Procedia PDF Downloads 88
344 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays

Authors: N. Benahmed, A. Cheriti

Abstract:

Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.

Keywords: medicinal plants, struvite, urolithiasis, zea mays

Procedia PDF Downloads 441
343 Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review

Authors: Mandana Hoseini

Abstract:

During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed.

Keywords: immune system, intestine, performance, requirement, threonine

Procedia PDF Downloads 92
342 Environmental Sustainability: A Renewable Energy Prospect with a Biofuel Alternative

Authors: Abul Quasem Al-Amin, Md. Hasanuzzaman, Mohammad Nurul Azam, Walter Leal Filho

Abstract:

With regard to the future energy strategy and vision, this study aimed to find the drawbacks of proposed energy diversification policy for 2020. To have a clear picture of the drawback and competitive alternative, this study has explored two scenarios, namely Scenario a and Scenario b. The Scenario a indicates that in the year 2020 the GHG emissions would be 823,498.00 million tons (Mt) with a 2020 final demand and proposed fuel mix such as by the Five-Fuel Diversification Strategy. In contrast, as an alternative, the Scenario b with biofuel potentials indicates that the substitution of coal energy by 5%, 10%, and 15%, respectively, with biofuel, would reduce the GHG emissions from 374,551.00, 405,118.00, and 823,498.00 million tons to 339,964.00, 329,834.00, and 305,288.00 million tons, respectively, by the present fuel mix, business-as-usual fuel mix, and proposed fuel mix up to the year 2020. Therefore, this study has explored a healthy alternative by introducing biofuel renewable energy option instead of conventional energy utilization in the power generation with environmental aspect in minds. This study effort would lessen the gap between GHG mitigation and future sustainable development and would useful to formulate effective renewable energy strategy in Malaysia.

Keywords: energy, environmental impacts, renewable energy, biofuel, energy policy

Procedia PDF Downloads 469
341 Study of the Responding Time for Low Permeability Reservoirs

Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo

Abstract:

One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.

Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation

Procedia PDF Downloads 485
340 Grammatical and Lexical Cohesion in the Japan’s Prime Minister Shinzo Abe’s Speech Text ‘Nihon wa Modottekimashita’

Authors: Nadya Inda Syartanti

Abstract:

This research aims to identify, classify, and analyze descriptively the aspects of grammatical and lexical cohesion in the speech text of Japan’s Prime Minister Shinzo Abe entitled Nihon wa Modotte kimashita delivered in Washington DC, the United States on February 23, 2013, as a research data source. The method used is qualitative research, which uses descriptions through words that are applied by analyzing aspects of grammatical and lexical cohesion proposed by Halliday and Hasan (1976). The aspects of grammatical cohesion consist of references (personal, demonstrative, interrogative pronouns), substitution, ellipsis, and conjunction. In contrast, lexical cohesion consists of reiteration (repetition, synonym, antonym, hyponym, meronym) and collocation. Data classification is based on the 6 aspects of the cohesion. Through some aspects of cohesion, this research tries to find out the frequency of using grammatical and lexical cohesion in Shinzo Abe's speech text entitled Nihon wa Modotte kimashita. The results of this research are expected to help overcome the difficulty of understanding speech texts in Japanese. Therefore, this research can be a reference for learners, researchers, and anyone who is interested in the field of discourse analysis.

Keywords: cohesion, grammatical cohesion, lexical cohesion, speech text, Shinzo Abe

Procedia PDF Downloads 146
339 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: large strain, compression-tension, loading-unloading, Mg alloys

Procedia PDF Downloads 228
338 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India

Authors: Roshni Raha, Kavya P., Gayathri M.

Abstract:

India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.

Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle

Procedia PDF Downloads 62
337 Polymer Recycling by Biomaterial and Its Application in Grease Formulation

Authors: Amitkumar Barot, Vijaykumar Sinha

Abstract:

There is growing interest in the development of new materials based on recycled polymers from plastic waste, and also in the field of lubricants much effort has been spent on substitution of petro-based raw materials by natural-based renewable ones. This is due to the facts of depleting fossil fuels and due to strict environmental laws. In relevance to this, new technique for the formulation of grease that combines the chemical recycling of poly (ethylene terephthalate) PET with the use of castor oil (CO) has been developed. Comparison to diols used in chemical recycling of PET, castor oil is renewable, easily available, environmentally friendly, economically cheaper and hence sustainability indeed. The process parameters like CO concentration and temperature were altered, and further, the influences of the process parameters have been studied in order to establish technically and commercially viable process. Further thereby formed depolymerized product find an application as base oil in the formulation of grease. A depolymerized product has been characterized by various chemical and instrumental methods, while formulated greases have been evaluated for its tribological properties. The grease formulated using this new environmentally friendly approach presents applicative properties similar, and in some cases superior, compared to those of a commercial grease obtained from non-renewable resources.

Keywords: castor oil, grease formulation, recycling, sustainability

Procedia PDF Downloads 205
336 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile

Procedia PDF Downloads 469
335 Molecular and Genetic Characterization of Diacylglycerol Acyltransferase1 Gene in Sudanese Dairy Cattle Kenana and Butana

Authors: Safa Abusara Mohammed Ali, Mohammed Khair Abdallah, Gurdon A. Brockmann, M. Reissmann

Abstract:

The aim of the study was the characterization of DGAT1 variants in Sudanese dairy cattle breeds. In this study, we examined 94 Kenana and 91 Butana dairy cattle from two regions of Sudan. We genotyped the DGAT1 sequence variant AJ318490.1:g.10433/10434 AA>GC that leads to the Lysine – Alanine substitution at position 232 (K232A) in the protein and the VNTR polymorphism in the promoter region. Genotyping was performed by allele specific PCR and PCR fragment lengths determination, respectively. In both breeds, the DGAT1 Lysine variant (232K) that is associated with high fat and protein content as well as high fat yield in other breeds is the high frequent allele. The frequencies of the 232K allele were 96.3% and 84.6% in Kenana and Butana breeds, respectively. At the DGAT1 promoter VNTR locus, four alleles containing four to seven repeats of the 18 bp motif were found in both breeds. The highest frequent allele was the VNTR allele 3 containing five repeats with 60.4 % and 57.5 % in Kenana and Butana breeds, respectively. In conclusion, the two examined Sudanese dairy cattle breeds do not differ in allele frequencies at the DGAT1 locus.

Keywords: dairy cattle, DGAT1, Kenana, Butana.

Procedia PDF Downloads 106
334 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria

Authors: M. O. Eyankware, D. O. Ufomata

Abstract:

Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.

Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard

Procedia PDF Downloads 433
333 Heavy Metals of Natural Phosphate Ore and the Way They Affect the Various Mineralurgic Modes of Treatment

Authors: Bezzi Nacer

Abstract:

The study focused on the qualitative and quantitative study of Trace elements contained in the natural phosphate ore of Djebel Onk layer and their behaviour to the various mineralurgic modes of treatment. The main objective is to locate the importance of these contents according to granulometry and their association with the existing mineralogical species and to define how the most appropriate treatment. The raw ore is in first submitted to a prior mechanical treatment consisting of homogenization operations, of grinding and of sifting, in order to separate it into three particle-size classes: fine <100 µm (F); medium 100-500 µm (I) and coarse > 500 µm (G), and then treated by calcination, washing and floatation. The identification of the different mineralogical phases, the chemical composition and the thermal behaviour of these samples were realized by various techniques: MEB, DRX, ATG-ATD, etc. The study of Trace elements, carried out by ICP-MS, identified thirty items, consisting mainly of rare earths and of transition metals. A close relation between trace elements and various minerals phases (apatite, dolomite and silicates), through operations of substitution. These elements are distributed between several mineralogical phases, in particular apatite (strontium, uranium, chrome, barium, cadmium) and silicates (strontium, sodium, nickel, zinc and copper).

Keywords: valorization of natural phosphate ore, heavy metals, qualitative and quantitative analysis, various mineralurgic

Procedia PDF Downloads 327
332 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.

Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion

Procedia PDF Downloads 208
331 Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products

Authors: E. Pretorius, A. M. Viljoen, M. van der Bank

Abstract:

Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer.

Keywords: Buchu, substitution, barcoding, BRONX algorithm, matK, ycf1, UPLC-MS

Procedia PDF Downloads 116
330 Hydrogeochemical Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria

Authors: Moses Oghenenyoreme Eyankware, Christian Ogubuchi Ede

Abstract:

Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film.

Keywords: water, quality, suitability, anthropogenic, Nigeria

Procedia PDF Downloads 202
329 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang

Abstract:

Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.

Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship

Procedia PDF Downloads 486
328 Incorporation of Coarse Rubber Aggregates in the Formulation of Self-Compacting Concrete: Optimization and Characterization

Authors: Zaoiai Said, Makani Abdelkadir, Tafraoui Ahmed

Abstract:

Concrete material suffers from a relatively low tensile strength and deformation capacity is limited. Such defects of the concrete are very fragile and sensitive to shrinkage cracking materials. The Self- Compacting Concrete (SCC) are highly fluid concretes whose implementation without vibration. This material replaces traditional vibrated concrete mainly seen techno-economic interest it presents. The SCC has several advantages which are at the origin of their development crunching. The research is therefore to conduct a comparison in terms of rheological and mechanical performance between different formulations to find the optimal dosage for rubber granulates. Through this research, we demonstrated that it is possible to make different settings SCC composition having good rheological and mechanical properties. This study also showed that the substitution of natural coarse aggregates (NA) by coarse rubber aggregates (RA) in the composition of the SCC, contributes to a slight variation of workability in the fresh state parameters still remaining in the field of SCC required by the AFGC recommendations. The experimental results show that the compressive strengths of SCC decreased slightly by substituting NA by RA. Finally, the decrease in free shrinkage is proportional to the percentage of RA incorporated into the composition of concrete. This reduction is mainly due to the improvement of the deformability of these materials.

Keywords: self-compacting concrete, coarse rubber aggregate, rheological characterization, mechanical performance, shrinkage

Procedia PDF Downloads 268
327 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 448