Search results for: DGAT1
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: DGAT1

5 Bioinformatics Analysis of DGAT1 Gene in Domestic Ruminnants

Authors: Sirous Eydivandi

Abstract:

Diacylglycerol-O-acyltransferase (DGAT1) gene encodes diacylglycerol transferase enzyme that plays an important role in glycerol lipid metabolism. DGAT1 is considered to be the key enzyme in controlling the synthesis of triglycerides in adipocytes. This enzyme catalyzes the final step of triglyceride synthesis (transform triacylglycerol (DAG) into triacylglycerol (TAG). A total of 20 DGAT1 gene sequences and corresponding amino acids belonging to 4 species include cattle, goats, sheep and yaks were analyzed, and the differentiation within and among the species was also studied. The length of the DGAT1 gene varies greatly, from 1527 to 1785 bp, due to deletion, insertion, and stop codon mutation resulting in elongation. Observed genetic diversity was higher among species than within species, and Goat had more polymorphisms than any other species. Novel amino acid variation sites were detected within several species which might be used to illustrate the functional variation. Differentiation of the DGAT1 gene was obvious among species, and the clustering result was consistent with the taxonomy in the National Center for Biotechnology Information.

Keywords: DGAT1gene, bioinformatic, ruminnants, biotechnology information

Procedia PDF Downloads 455
4 Molecular and Genetic Characterization of Diacylglycerol Acyltransferase1 Gene in Sudanese Dairy Cattle Kenana and Butana

Authors: Safa Abusara Mohammed Ali, Mohammed Khair Abdallah, Gurdon A. Brockmann, M. Reissmann

Abstract:

The aim of the study was the characterization of DGAT1 variants in Sudanese dairy cattle breeds. In this study, we examined 94 Kenana and 91 Butana dairy cattle from two regions of Sudan. We genotyped the DGAT1 sequence variant AJ318490.1:g.10433/10434 AA>GC that leads to the Lysine – Alanine substitution at position 232 (K232A) in the protein and the VNTR polymorphism in the promoter region. Genotyping was performed by allele specific PCR and PCR fragment lengths determination, respectively. In both breeds, the DGAT1 Lysine variant (232K) that is associated with high fat and protein content as well as high fat yield in other breeds is the high frequent allele. The frequencies of the 232K allele were 96.3% and 84.6% in Kenana and Butana breeds, respectively. At the DGAT1 promoter VNTR locus, four alleles containing four to seven repeats of the 18 bp motif were found in both breeds. The highest frequent allele was the VNTR allele 3 containing five repeats with 60.4 % and 57.5 % in Kenana and Butana breeds, respectively. In conclusion, the two examined Sudanese dairy cattle breeds do not differ in allele frequencies at the DGAT1 locus.

Keywords: dairy cattle, DGAT1, Kenana, Butana.

Procedia PDF Downloads 77
3 Polymorphisms of STAT5A and DGAT1 Genes and Their Associations with Milk Trait in Egyptian Goats

Authors: Othman Elmahdy Othman

Abstract:

The objectives of this study were to identify polymorphisms in the STAT5A using Restriction Fragment Length Polymorphism and DGAT1 using Single-Strand Conformation Polymorphism genes among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) as well as investigate the effect of their genotypes on milk composition traits of Zaraibi goats. One hundred and fifty blood samples were collected for DNA extraction, 60 from Zaraibi, 40 from Damascus and 50 from Barki breeds. Fat, protein and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, CC and CT (for STAT5A) and C-C- and C-C+ (for DGAT1), were identified in the three Egyptian goat breeds with different frequencies. The associations between these genotypes and milk fat, protein and lactose were determined in Zaraibi breed. The results showed that the STAT5A genotypes had significant effects on milk yield, protein, fat and lactose with the superiority of CT genotype over CC. Regarding DGAT1 polymorphism, the result showed the only association between it with milk fat where the animals with C-C+ genotype had greater milk fat than animals possess C-C- genotype. The association of combined genotypes with milk trait declared that the does with heterozygous genotypes for both genes are preferred than does with homozygous genotypes where the animals with CTC-C+ have more milk yield, fat and protein than those with CCC-C- genotype. In conclusion, the result showed that C/T and C-/C+ SNPs of STAT5A and DGAT1 genes respectively may be useful markers for assisted selection programs to improve goat milk composition

Keywords: DGAT1, genetic polymorphism, milk trait, STAT5A

Procedia PDF Downloads 116
2 Genetic Diversity and Discovery of Unique SNPs in Five Country Cultivars of Sesamum indicum by Next-Generation Sequencing

Authors: Nam-Kuk Kim, Jin Kim, Soomin Park, Changhee Lee, Mijin Chu, Seong-Hun Lee

Abstract:

In this study, we conducted whole genome re-sequencing of 10 cultivars originated from five countries including Korea, China, India, Pakistan and Ethiopia with Sesamum indicum (Zhongzho No. 13) genome as a reference. Almost 80% of the whole genome sequences of the reference genome could be covered by sequenced reads. Numerous SNP and InDel were detected by bioinformatic analysis. Among these variants, 266,051 SNPs were identified as unique to countries. Pakistan and Ethiopia had high densities of SNPs compared to other countries. Three main clusters (cluster 1: Korea, cluster 2: Pakistan and India, cluster 3: Ethiopia and China) were recovered by neighbor-joining analysis using all variants. Interestingly, some variants were detected in DGAT1 (diacylglycerol O-acyltransferase 1) and FADS (fatty acid desaturase) genes, which are known to be related with fatty acid synthesis and metabolism. These results can provide useful information to understand the regional characteristics and develop DNA markers for origin discrimination of sesame.

Keywords: Sesamum indicum, NGS, SNP, DNA marker

Procedia PDF Downloads 294
1 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 111