Search results for: ginger bioactive compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2575

Search results for: ginger bioactive compounds

2185 In Vivo Response of Scaffolds of Bioactive Glass-Ceramic

Authors: Ana Claudia Muniz Rennó, Karina Nogueira

Abstract:

This study aimed to investigate the in vivo tissue response of the introduction of the bioactive mesh (BM) scaffolds using a model of tibial bone defect implants in rats. Although a previous in vivo study demonstrated a highly positive response of particulate bioactive materials in the morphological and biomechanical properties of the bone callus, the effects of material with superior bioactivity, present in form of meshes have not been studied yet. Eighty male Wistar rats with 3 mm tibial defects were used. Animals were divided into four groups: intact group (IG) – tibia without any injury; bone defect day zero (0dD) – bone defects, sacrificed immediately after injury; bone defect control group (CG) – bone defects without any filler and bone defect filled with BM scaffold. The animals of BM and CG groups were sacrificed 15, 30 and 45 days post-injury to compare the temporal-special effects of the scaffolds on bone healing. The histological analysis revealed an organized newly formed bone at 30 and 45 days post-surgery in the BM. Also, this group presented an increased COX-2 expression on days 15 and 30 post-surgery. Furthermore, the immunohistochemistry analysis revealed that, BM presented a positive immunoexpression of RUNX-2 during all periods evaluated. The biomechanical analysis revealed that at 15 day after surgery, no significant statistically difference was observed between BM and CG and both groups had significantly higher values of maximal load compared to 0dG and significantly lower values than IG. On days 30 and 45 post-surgery, BM presented statistically lower values of maximal load compared to the CG. Nevertheless, at the same periods, BM did not show statistically significant difference compared to the IG maximal load values (p > 0, 05). Our results revealed that the implantation of the BM scaffolds was effective in stimulating newly bone formation.

Keywords: bone, biomaterials, scaffolds, cartilage

Procedia PDF Downloads 334
2184 Synthetic Coumarin Derivatives and Their Anticancer Properties

Authors: Kabange Kasumbwe, Viresh Mohanlall, Bharti Odhav, Venu Narayanaswamy

Abstract:

Coumarins are naturally occurring plant metabolites known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological and biochemical properties and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1-CMRN7 were synthesized and evaluated for their anticancer activity. The cytotoxicity potential of the test compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer) and PBM (Peripheral Blood Mononuclear) cell lines using MTT assay keeping doxorubicin as standard drug. The apoptotic potential of the coumarin compounds was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential; pro-apoptotic changes were investigated using the AnnexinV-PI staining, JC-1, caspase-3 enzyme kits respectively on flow cytometer. The synthetic coumarin has strongly suppressed the cell proliferation of UACC-62 (Melanoma) and MCF-7 (Breast) Cancer cells, the higher toxicity of these compounds against UACC-62 (Melanoma) and MCF-7 (Breast) were CMRN3, CMRN4, CMRN5, CMRN6. However, compounds CMRN1, CMRN2, and CMRN7 had no significant inhibitory effect. Furthermore the active compounds CMRN3, CMRN4, CMRN5, CMRN6 exerted antiproliferative effects through apoptosis induction against UACC-62 (Melanoma), suggesting their potential could be considered as attractive lead molecules in the future for the development of potential anticancer agents since one of the important criteria in the development of therapeutic drugs for cancer treatment is to have high selectivity and less or no side-effects on normal cells and these compounds had no inhibitory effect against the PBMC cells.

Keywords: coumarin, MTT, apoptosis, cytotoxicity

Procedia PDF Downloads 234
2183 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 247
2182 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 270
2181 The Evaluation of Substitution of Acacia villosa in Ruminants Ration

Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat

Abstract:

Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.

Keywords: Acacia villosa, digestibility, gas production, secondary compounds

Procedia PDF Downloads 155
2180 Discovery, Design and Synthesis of Some Novel Antitumor 1,2,4-Triazine Derivatives as C-Met Kinase Inhibitors

Authors: Ibrahim M. Labouta, Marwa H. El-Wakil, Hayam M. Ashour, Ahmed M. Hassan, Manal N. Saudi

Abstract:

The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Among the wide variety of heterocycles that have been explored for developing c-Met kinase inhibitors, the 1,2,4-triazines have been rarely investigated, although they are well known in the literature to possess antitumor activities. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives possessing N-acylarylhydrazone moiety and another series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-MP in order to explore their “double-drug” effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antiproliferative activity and four compounds showed potent inhibitory activity more than the reference drug Foretinib against one or more cancer cell lines. The obtained results revealed that the potent compounds are highly selective to A549 (lung adenocarcinoma) cancer cell line. The c-Met kinase inhibitory activity of the potent derivatives is still under investigation. The present study clearly demonstrates that the 1,2,4-triazine core ring exhibits promising antitumor activity with potential c-Met kinase inhibitory activity.

Keywords: 1, 2, 4-triazine, antitumor, c-Met inhibitor, double-drug

Procedia PDF Downloads 333
2179 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile

Authors: Reira Kinoshita, Shin'ichi Ishimaru

Abstract:

Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.

Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds

Procedia PDF Downloads 106
2178 A New Phenolic Compound Isolated from Laurus nobilis from Lebanon and Comparison of Antioxidant Activity of Different Parts

Authors: Turk Ayman, Ahn Jong Hoon, Khalife K. Hala, Gali-Muhtasib Hala, Lee Mi Kyeong

Abstract:

Laurus nobilis is an aromatic plant widely distributed in the Mediterranean region. The leaves of this plant are frequently used as a spice and as a traditional medicine for several diseases. In our present study, the methanolic extract of L. nobilis leaves showed antioxidant activity. Chromatographic separations of the EtOAc fraction which had the highest antioxidant activity led to the isolation of 12 compounds. Among them, there was a new phenylpropanoid derivative, which was identified by 1D and 2D NMR experiments, as well as high resolution mass spectrometry. In addition, two major compounds, catechin and epicatechin, which showed strong antioxidant activity may be responsible for the antioxidant activity of L. nobilis leaves. Since different plant parts may contain different types of constituents which contribute to the biological activities, we investigated the antioxidant activity of different parts of L. nobilis such as leaves, stems and fruits. Stems of L. nobilis showed the most potent antioxidant activity, followed by leaves. Further quantitation of total phenol and flavonoids contents revealed a positive correlation between the content of these compounds and antioxidant activity. Taken together, phenolic compounds including flavonoids are responsible for antioxidant activity of L. nobilis. In addition, stem parts of L. nobilis are suggested as good sources for antioxidant activity. Conclusively, L. nobilis might be effective in several free radical mediated diseases.

Keywords: antioxidant activity, different parts, Laurus nobilis, phenolic compound

Procedia PDF Downloads 296
2177 In Silico Study of the Biological and Pharmacological Activity of Nigella sativa

Authors: Ammar Ouahab, Meriem Houichi , Sanna Mihoubi

Abstract:

Background: Nigella sativa is an annual flowering plant, belongs to the Ranunculaceae family. It has many pharmacological activities such as anti-inflammatory; anti-bacterial; anti-hepatotoxic activities etc. Materials: In order to predict the pharmacological activity of Nigella Sativa’s compounds, some web based servers were used, namely, PubChem, Molinspiration, ADMET-SAR, PASS online and PharMapper. In addition to that, AutoDOCK was used to investigate the different molecular interactions between the selected compounds and their target proteins. Results: All compounds displayed a stable interaction with their targets and satisfactory binding energies, which means that they are active on their targets. Conclusion: Nigella sativa is an effective medicinal plant that has several ethno-medical uses; the latter uses are proven herein via an in-silico study of their pharmacological activities.

Keywords: Nigella sativa, AutoDOCK, PubChem, Molinspiration, ADMET-SAR, PharMapper, PASS online server, docking

Procedia PDF Downloads 126
2176 Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf

Authors: Manal M. Hamed, Mosad A. Ghareeb, Abdel-Aleem H. Abdel-Aleem, Amal M. Saad, Mohamed S. Abdel-Aziz, Asmaa H. Hadad

Abstract:

Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant.

Keywords: Callistemon citrinus, flavanone, antioxidant activity, antimicrobial activity, essential oil, Myrtaceae

Procedia PDF Downloads 289
2175 Synthesis of 4', 6'-Bis-(2, 4-Dinitro-Aniline)-(2'-Aryl-Amine)-S-Triazine and Biological Activity Studies

Authors: Dilesh Indorkar

Abstract:

The aromatic, six membered ring containing three nitrogen atoms are known as triazines. Three triazines are theoretically possible, 1,3,5-triazine, 1,2,4-triazine and 1,2,3-triazine[1]. The 1,3,5-triazines are amongst the oldest known organic compounds. Originally they were called the symmetric triazines. Usuelly abbreviated to s- or sys triazines. The numbering follows the usual convention of beginning at the hetero atom as shown for the parent compound 1,3,5-triazine (I). The triazine rings, each contain 6 pi electrons which fill three bonding molecular orbital there are also three pairs of non bonding electrons in each molecule which are responsible for basic properties of the compounds.

Keywords: s-triazine, thiazoline, isoxazoline, benzoxazine heterocyclic

Procedia PDF Downloads 323
2174 Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats

Authors: Kathryn Nderitu, Atunga Nyachieo, Ezekiel Mecha

Abstract:

Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity.

Keywords: solanum nigrum, High fat diet, phytocompounds, obesity

Procedia PDF Downloads 49
2173 Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg

Authors: Amirhossein Moghanian, Morteza Elsa, Mehrnaz Aminitabar

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 144
2172 Biosynthesis of Natural and Halogenated Plant Alkaloids in Yeast

Authors: Beata J. Lehka, Samuel A. Bradley, Frederik G. Hansson, Khem B. Adhikari, Daniela Rago, Paulina Rubaszka, Ahmad K. Haidar, Ling Chen, Lea G. Hansen, Olga Gudich, Konstantina Giannakou, Yoko Nakamura, Thomas Dugé de Bernonville, Konstantinos Koudounas, Sarah E. O’Connor, Vincent Courdavault, Jay D. Keasling, Jie Zhang, Michael K. Jensen

Abstract:

Monoterpenoid indole alkaloids (MIAs) represent a large class of natural plant products with marketed pharmaceutical activities against a wide range of applications, including cancer and mental disorders. Halogenated MIAs have shown improved pharmaceutical properties; however, characterisation and synthesis of new-to-nature halogenated MIAs remain a challenge in slow-growing plants with limited genetic tractability. Here, we demonstrate a platform for de novo biosynthesis of two bioactive MIAs, serpentine and alstonine, in baker’s yeast Saccharomyces cerevisiae, reaching titers of 8.85 mg/L and 4.48 mg/L, respectively, when cultivated in fed-batch micro bioreactors. Using this MIA biosynthesis platform, we undertake a systematic exploration of the derivative space surrounding these compounds and produce halogenated MIAs. The aim of the current study is to develop a fermentation process for halogenated MIAs.

Keywords: monoterpenoid indole alkaloids, Saccharomyces cerevisiae, halogenated derivatives, fermentation

Procedia PDF Downloads 204
2171 Functional Beverage to Boosting Immune System in Elderly

Authors: Adineh Tajmousavilangerudi, Ali Zein Alabiden Tlais, Raffaella Di Cagno

Abstract:

The SARS-Cov-2 pandemic has exposed our vulnerability to new illnesses and novel viruses that attack our immune systems, particularly in the elderly. The vaccine is being gradually introduced over the world, but new strains of the virus and COVID-19 will emerge and continue to cause illness. Aging is associated with significant changes in intestinal physiology, which increases the production of inflammatory products, alters the gut microbiota, and consequently establish inadequate immune response to minimize symptoms and disease development. In this context, older people who followed a Mediterranean-style diet, rich in polyphenols and dietary fiber, performed better physically and mentally (1,2). This demonstrates the importance of the human gut microbiome in transforming complex dietary macromolecules into the most biologically available and active nutrients, which in turn help to regulate metabolism and both intestinal and systemic immune function (3,4). The role of lactic acid fermentation is prominent also as a powerful tool for improving the nutritional quality of the human diet by releasing nutrients and boosting the complex bioactive compounds and vitamin content. the PhD project aims to design fermented and functional foods/beverages capable of modulating human immune function via the gut microbiome.

Keywords: functional bevarage, fermented beverage, gut microbiota functionality, immun system

Procedia PDF Downloads 107
2170 Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease

Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant

Abstract:

Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.

Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery

Procedia PDF Downloads 68
2169 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 504
2168 Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives

Authors: Hossein Mostafavi

Abstract:

A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive.

Keywords: gallic acid derivatives, antibacterial, antibiotics, inhibition

Procedia PDF Downloads 131
2167 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds

Procedia PDF Downloads 501
2166 Toxicological Validation during the Development of New Catalytic Systems Using Air/Liquid Interface Cell Exposure

Authors: M. Al Zallouha, Y. Landkocz, J. Brunet, R. Cousin, J. M. Halket, E. Genty, P. J. Martin, A. Verdin, D. Courcot, S. Siffert, P. Shirali, S. Billet

Abstract:

Toluene is one of the most used Volatile Organic Compounds (VOCs) in the industry. Amongst VOCs, Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) emitted into the atmosphere have a major and direct impact on human health. It is, therefore, necessary to minimize emissions directly at source. Catalytic oxidation is an industrial technique which provides remediation efficiency in the treatment of these organic compounds. However, during operation, the catalysts can release some compounds, called byproducts, more toxic than the original VOCs. The catalytic oxidation of a gas stream containing 1000ppm of toluene on Pd/α-Al2O3 can release a few ppm of benzene, according to the operating temperature of the catalyst. The development of new catalysts must, therefore, include chemical and toxicological validation phases. In this project, A549 human lung cells were exposed in air/liquid interface (Vitrocell®) to gas mixtures derived from the oxidation of toluene with a catalyst of Pd/α-Al2O3. Both exposure concentrations (i.e. 10 and 100% of catalytic emission) resulted in increased gene expression of Xenobiotics Metabolising Enzymes (XME) (CYP2E1 CYP2S1, CYP1A1, CYP1B1, EPHX1, and NQO1). Some of these XMEs are known to be induced by polycyclic organic compounds conventionally not searched during the development of catalysts for VOCs degradation. The increase in gene expression suggests the presence of undetected compounds whose toxicity must be assessed before the adoption of new catalyst. This enhances the relevance of toxicological validation of such systems before scaling-up and marketing.

Keywords: BTEX toxicity, air/liquid interface cell exposure, Vitrocell®, catalytic oxidation

Procedia PDF Downloads 406
2165 Mechanistic Analysis of an L-2-Haloacid Dehalogenase (DehL) from Rhizobium Sp. RC1: Computational Approach

Authors: Aliyu Adamu, Fahrul Huyop, Roswanira Abdul Wahab, Mohd Shahir Shamsir

Abstract:

Halogenated organic compounds occur in huge amount in biosphere. This is attributable to the diverse use of halogen-based compounds in the synthesis of various industrially important products. Halogenated compound is toxic and may persist in the environment, thereby causing serious health and environmental pollution problems. L-2-haloacid dehalogenases (EC 3.8.1.2) catalyse the specific cleavage of carbon-halogen bond in L-isomers of halogenated compounds, which consequently reverse the effects of environmental halogen-associated pollution. To enhance the efficiency and utility of these enzymes, this study investigates the catalytic amino acid residues and the molecular functional mechanism of DehL, by classical molecular dynamic simulations, MM-PBSA and ab initio fragments molecular orbital (FMO) calculations. The results of the study will serve as the basis for the molecular engineering of the enzyme.

Keywords: DehL, Functional mechanism, Catalytic residues, L-2-haloacid dehalogenase

Procedia PDF Downloads 350
2164 Inhibitory Effect on TNF-Alpha Release of Dioscorea membranacea and Its Compounds

Authors: Arunporn Itharat, Srisopa Ruangnoo, Pakakrong Thongdeeying

Abstract:

The rhizomes of Dioscorea membranacea (DM) has long been used in Thai Traditional medicine to treat cancer and inflammatory conditions such as rheumatism. The objective of this study was to investigate anti-inflammatory activity by determining the inhibitory effect on LPS-induced TNF-α from RAW264.7 cells of crude extracts and pure isolated compounds from DM. Three known dihydrophenantrene compounds were isolated by a bioassay guided isolation method from DM ethanolic extract [2,4 dimethoxy-5,6-dihydroxy-9,10-dihydrophenanthrene (1) and 5-hydroxy-2,4,6-trimethoxy-9,10-dihydrophenanthrene(2) and 5,6,2 -trihydroxy 3,4-methoxy, 9,10- dihydrophenanthrene (3)]. 1 showed the highest inhibitory effect on PGE2, followed by 3 and 1 (IC50 = 2.26, 4.97 and >20 μg/ml or 8.31,17.25 and > 20 µM respectively). These findings suggest that this plant showed anti-inflamatory effects by displaying an inhibitory effect on TNF-α release, hence, this result supports the usage of Thai traditional medicine to treat inflammation related diseases.

Keywords: Dioscorea membranacea, anti-inflammatory activity, TNF-Alpha , dihidrophenantrene compound

Procedia PDF Downloads 499
2163 Synthesis of Rare-Earth Pyrazolate Compounds

Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon

Abstract:

Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.

Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures

Procedia PDF Downloads 212
2162 Docking Studie of Biologically Active Molecules: Exploring Medical Applications

Authors: Sihame Amakrane, Zineb Ouahdi, Mohammed Salah, Said Belaaouad

Abstract:

\This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes.

Keywords: docking, QSAR, bending energy, e. coli

Procedia PDF Downloads 75
2161 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 57
2160 Chemical Composition and Antioxidant Activity of Fresh Chokeberries

Authors: Vesna Tumbas Šaponjac, Sonja Djilas, Jasna Čanadanović-Brunet, Gordana Ćetković, Jelena Vulić, Slađana Stajčić, Milica Vinčić

Abstract:

Substantial interest has been expressed in fruits and berries due to their potential favourable health effects and high content of polyphenols, especially flavonoids and anthocyanins. Chokeberries (Aronia melanocarpa) are dark berries, similar to blackcurrants, that have been used by native Americans both as a food resource and in traditional medicine for treatment of cold. Epidemiological studies revealed positive effects of chokeberries on colorectal cancer, cardiovascular diseases, and various inflammatory conditions. Chokeberries are well known as good natural antioxidants, which contain phenolic compounds, flavonoids, anthocyanidins and antioxidant vitamins. The aim of this study was to provide information on polyphenolic compounds present in fresh chokeberries as well as to determine its antioxidant activity. Individual polyphenolic compounds have been identified and quantified using HPLC/UV-Vis. Results showed that the most dominant phenolic acid was protocatechuic acid (274.23 mg/100 g FW), flavonoid rutin (319.66 mg/100 g FW) and anthocyanin cyanidin-3-galactoside (1532.68 mg/100 g FW). Generally, anthocyanins were predominant compounds in fresh chokeberry (2342.82 mg/100 g FW). Four anthocyanins have been identified in fresh chokeberry and all of them were cyanidin glicosides. Antioxidant activity was determined using spectrophotometric DPPH assay and compared to standard antioxidant compound vitamin C. The resulting EC50 value (amount of fresh chokeberries that scavenge 50% of DPPH radicals) is 0.33 mg vitamin C equivalent/100 g FW. The results of this investigation provide evidence on high contents of phenolic compounds, especially anthocyanins, in chokeberries as well as high antioxidant activity of this fruit.

Keywords: chokeberry, polyphenols, antioxidant, DPPH radicals

Procedia PDF Downloads 568
2159 Biochemical Efficacy, Molecular Docking and Inhibitory Effect of 2,3-Dimethylmaleic Anhydride on Acetylcholinesterases

Authors: Kabrambam D. Singh, Dinabandhu Sahoo, Yallappa Rajashekar

Abstract:

Evolution has caused many insects to develop resistance to several synthetic insecticides. This problem along with the persisting concern regarding the health and environmental safety issues of the existing synthetic insecticides has urged the scientific fraternity to look for a new plant-based natural insecticide with inherent eco-friendly nature. Colocasia esculenta var. esculenta (L.) Schott (Araceae family) is widely grown throughout the South- East Asian Countries for its edible corms and leaves. Various physico-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and Mass) were used for the isolation and characterization of isolated bioactive molecule named 2, 3-dimethylmaleic anhydride (3, 4-dimethyl-2, 5-furandione). This compound was found to be highly toxic, even at low concentration, against several storage grain pests when used as biofumigant. Experimental studies on the mode of action of 2, 3-dimethylmaleic anhydride revealed that the biofumigant act as inhibitor of acetylcholinesterase enzyme in cockroach and stored grain insects. The knockdown activity of bioactive compound is concurrent with in vivo inhibition of AChE; at KD99 dosage of bioactive molecule showed more than 90% inhibition of AChE activity in test insects. The molecule proved to affect the antioxidant enzyme system; superoxide dismutase (SOD), and catalase (CAT) and also found to decrease reduced glutathione (GSH) level in the treated insects. The above results indicate involvement of inhibition of AChE activity and oxidative imbalance as the potential mode of action of 2, 3-dimethylmaleic anhydride. In addition, the study reveals computational docking programs elaborate the possible interaction of 2, 3-dimethylmaleic anhydride with enzyme acetylcholinesterase (AChE) of Periplaneta americana. Finally, the results represent that toxicity of 2, 3-dimethylmaleic anhydride might be associated with inhibition of AChE activity and oxidative imbalance.

Keywords: 2, 3-dimethylmaleic anhydride, Colocasia esculenta var. esculenta (L.) Schott, Biofumigant, acetylcholinesterase, antioxidant enzyme, molecular docking

Procedia PDF Downloads 156
2158 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 240
2157 Isolation of Three Bioactive Phenantroindolizidine Alkaloids from the Fruit Latex of Ficus botryocarpa Miq.

Authors: Jayson Wau, David Timi, Anthony Harakuwe, Bruce Bowden, Cherie Motti, Harry Sakulas, Rag Gubag-Sipou

Abstract:

The latex of F. botryocarpa fruit is applied on sores, wounds and other skin infections in Papua New Guinea ethnotherapeutic practices. Systematic bioassay guided separation and isolation of subsequent fractions of latex extracts resulted in three bioactive fractions active against Staphylococcus aureus and Escherichia coli. This study reports structural elucidation of the three isolates. Structures were determined by physical (M.pt and Rf values) and spectroscopic (1D-1H NMR, 2D-HSQC NMR, 2D-HMBC NMR) and MS ESI-POS. The two methylene protons (2H-1) and (2H-3) resonate as triplets at δ 3.59 and δ 4.99 respectively. Electron dense δ 4.99 (2H-3) on (C-3) depicts the strong electron-withdrawing component, quaternary nitrogen (=N= +). Protons resonating at δ 3.88 and 3.89 are singlets depicting two methoxy groups. Both δ 3.88 and δ 3.89 are para-aryls substituents. The methines δ 9.13 and 8.60 are singlets depicting two lone protons on the indolizidinium aryl component. All isolates, (1), (2) and (3) were identified to be ficuseptine by comparing 1D-NMR assignments. 2D-NMR and MS of (2) found it to be ficuseptine chloride '2, 3-dihydro-6, 8-bis (4-methoxyphenyl)-, 1H-indolizinium chloride'. Their counter ions of the ficuseptines were not established and provide promising lead for the further investigation.

Keywords: Ficus botryocarpa, antimicrobial activity, ficuseptine, sores

Procedia PDF Downloads 517
2156 Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles

Authors: Rama Devi Kyatham, D. Ashok, K. S. K. Rao Patnaik, Raju Bathula

Abstract:

We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods.

Keywords: pyrazoles, validation, resistant microbial strains, anti-microbial activities

Procedia PDF Downloads 163