Search results for: XML database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1639

Search results for: XML database

1249 Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy

Authors: Ju Hyun Won, Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging

Procedia PDF Downloads 431
1248 Development of Configuration Software of Space Environment Simulator Control System Based on Linux

Authors: Zhan Haiyang, Zhang Lei, Ning Juan

Abstract:

This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal.

Keywords: Linux OS, configuration software, OPC Server driver, MYSQL database

Procedia PDF Downloads 289
1247 The Effect of Absolute and Relative Deprivation on Homicides in Brazil

Authors: Temidayo James Aransiola, Vania Ceccato, Marcelo Justus

Abstract:

This paper investigates the effect of absolute deprivation (proxy unemployment) and relative deprivation (proxy income inequality) on homicide levels in Brazil. A database from the Brazilian Information System about Mortality and Census of the year 2000 and 2010 was used to estimate negative binomial models of homicide levels controlling for socioeconomic, demographic and geographic factors. Findings show that unemployment and income inequality affect homicides levels and that the effect of the former is more pronounced compared to the latter. Moreover, the combination of income inequality and unemployment exacerbates the overall effect of deprivation on homicide levels.

Keywords: deprivation, inequality, interaction, unemployment, violence

Procedia PDF Downloads 146
1246 A Novel Approach to 3D Thrust Vectoring CFD via Mesh Morphing

Authors: Umut Yıldız, Berkin Kurtuluş, Yunus Emre Muslubaş

Abstract:

Thrust vectoring, especially in military aviation, is a concept that sees much use to improve maneuverability in already agile aircraft. As this concept is fairly new and cost intensive to design and test, computational methods are useful in easing the preliminary design process. Computational Fluid Dynamics (CFD) can be utilized in many forms to simulate nozzle flow, and there exist various CFD studies in both 2D mechanical and 3D injection based thrust vectoring, and yet, 3D mechanical thrust vectoring analyses, at this point in time, are lacking variety. Additionally, the freely available test data is constrained to limited pitch angles and geometries. In this study, based on a test case provided by NASA, both steady and unsteady 3D CFD simulations are conducted to examine the aerodynamic performance of a mechanical thrust vectoring nozzle model and to validate the utilized numerical model. Steady analyses are performed to verify the flow characteristics of the nozzle at pitch angles of 0, 10 and 20 degrees, and the results are compared with experimental data. It is observed that the pressure data obtained on the inner surface of the nozzle at each specified pitch angle and under different flow conditions with pressure ratios of 1.5, 2 and 4, as well as at azimuthal angle of 0, 45, 90, 135, and 180 degrees exhibited a high level of agreement with the corresponding experimental results. To validate the CFD model, the insights from the steady analyses are utilized, followed by unsteady analyses covering a wide range of pitch angles from 0 to 20 degrees. Throughout the simulations, a mesh morphing method using a carefully calculated mathematical shape deformation model that simulates the vectored nozzle shape exactly at each point of its travel is employed to dynamically alter the divergent part of the nozzle over time within this pitch angle range. The mesh morphing based vectored nozzle shapes were compared with the drawings provided by NASA, ensuring a complete match was achieved. This computational approach allowed for the creation of a comprehensive database of results without the need to generate separate solution domains. The database contains results at every 0.01° increment of nozzle pitch angle. The unsteady analyses, generated using the morphing method, are found to be in excellent agreement with experimental data, further confirming the accuracy of the CFD model.

Keywords: thrust vectoring, computational fluid dynamics, 3d mesh morphing, mathematical shape deformation model

Procedia PDF Downloads 85
1245 Development of a Vegetation Searching System

Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.

Keywords: endemic species, vegetation, web-based system, black box testing, Thailand

Procedia PDF Downloads 310
1244 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
1243 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima

Authors: Khalid A. Alsaif, Mosaad A. Foda

Abstract:

The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.

Keywords: noise pollution, road traffic noise, LimA predictor, GIS

Procedia PDF Downloads 407
1242 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 596
1241 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 163
1240 Research Repository System (RRS) for Academics

Authors: Ajayi Olusola Olajide, O. Ojeyinka Taiwo, Adeolara Oluwawemimo Janet, Isheyemi Olufemi Gabriel, Lawal Muideen Adekunle

Abstract:

In an academic world where research work is the tool for promotion and elevation to higher cadres, the quest for a system that secure researchers’ work, monitor as well as alert researchers of pending academic research work, cannot be over-emphasized. This study describes how a research repository system for academics is designed. The invention further relates to a system for archiving any paperwork and journal that comprises of a database for storing all researches. It relates to a method for users to communicate through messages which will also allow reviewing all the messages. To create this research repository system, PHP and MySQL were married together for the system implementation.

Keywords: research, repository, academic, archiving, secure, system, implementation

Procedia PDF Downloads 588
1239 JREM: An Approach for Formalising Models in the Requirements Phase with JSON and NoSQL Databases

Authors: Aitana Alonso-Nogueira, Helia Estévez-Fernández, Isaías García

Abstract:

This paper presents an approach to reduce some of its current flaws in the requirements phase inside the software development process. It takes the software requirements of an application, makes a conceptual modeling about it and formalizes it within JSON documents. This formal model is lodged in a NoSQL database which is document-oriented, that is, MongoDB, because of its advantages in flexibility and efficiency. In addition, this paper underlines the contributions of the detailed approach and shows some applications and benefits for the future work in the field of automatic code generation using model-driven engineering tools.

Keywords: conceptual modelling, JSON, NoSQL databases, requirements engineering, software development

Procedia PDF Downloads 379
1238 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City

Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub

Abstract:

The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.

Keywords: Casablanca, guidebook, petrography, soil

Procedia PDF Downloads 301
1237 Internal Family Systems Parts-Work: A Revolutionary Approach to Reducing Suicide Lethality

Authors: Bill D. Geis

Abstract:

Even with significantly increased spending, suicide rates continue to climb—with alarming increases among traditionally low-risk groups. This has caused clinicians and researchers to call for a complete rethinking of all assumptions about suicide prevention, assessment, and intervention. A form of therapy--Internal Family Systems Therapy--affords tremendous promise in sustained diminishment of lethal suicide risk. Though a form of therapy that is most familiar to trauma therapists, Internal Family Systems Therapy, involving direct work with suicidal parts, is a promising therapy for meaningful and sustained reduction in suicide deaths. Developed by Richard Schwartz, Internal Family Systems Therapy proposes that we are all influenced greatly by internal parts, frozen by development adversities, and these often-contradictory parts contribute invisibly to mood, distress, and behavior. In making research videos of patients from our database and discussing their suicide attempts, it is clear that many persons who attempt suicide are in altered states at the time of their attempt and influenced by factors other than conscious intent. Suicide intervention using this therapy involves direct work with suicidal parts and other interacting parts that generate distress and despair. Internal Family Systems theory posits that deep experiences of pain, fear, aloneness, and distress are defended by a range of different parts that attempt to contain these experiences of pain through various internal activities that unwittingly push forward inhibition, fear, self-doubt, hopelessness, desires to cut and engage in destructive behavior, addictive behavior, and even suicidal actions. These suicidal parts are often created (and “frozen”) at young ages, and these very young parts do not understand the consequences of this influence. Experience suggests that suicidal parts can create impulsive risk behind the scenes when pain is high and emotional support reduced—with significant crisis potential. This understanding of latent suicide risk is consistent with many of our video accounts of serious suicidal acts—compiled in a database of 1104 subjects. Since 2016, consent has been obtained and records kept of 23 highly suicidal patients, with initial Intention-to-Die ratings (0= no intent, 10 = conviction to die) between 5 and 10. In 67% of these cases using IFST parts-work intervention, these highly suicidal patients’ risk was reduced to 0-1, and 83% of cases were reduced to 4 or lower. There were no suicide deaths. Case illustrations will be offered.

Keywords: suicide, internal family systems therapy, crisis management, suicide prevention

Procedia PDF Downloads 44
1236 The Role of Social and Technical Lean Implementation in Improving Operational Performance: Insights from the Pharmaceutical Industry

Authors: Bernasconi Matteo, Grothkopp Mark, Friedli Thomas

Abstract:

The objective of this paper is to examine the relationships between technical and social lean bundles as well as operational performance in the context of the pharmaceutical industry. We investigate the direct and mediating effects of the lean bundles total productive maintenance (TPM), total quality management (TQM), Just-In-Time (JIT), and human resource management (HRM) on operational performance. Our analysis relies on 113 manufacturing facilities from the St.Gallen OPEX benchmarking database. The results show that HRM has a positive indirect effect on operational performance mediated by the technical lean bundles.

Keywords: human resource management, operational performance, pharmaceutical industry, technical lean practices

Procedia PDF Downloads 128
1235 Removal of Perchloroethylene, a Common Pollutant, in Groundwater Using Activated Carbon

Authors: Marianne Miguet, Gaël Plantard, Yves Jaeger, Vincent Goetz

Abstract:

The contamination of groundwater is a major concern. A common pollutant, the perchloroethylene, is the target contaminant. Water treatment process as Granular Activated Carbons are very efficient but requires pilot-scale testing to determine the full-scale GAC performance. First, the batch mode was used to get a reliable experimental method to estimate the adsorption capacity of a common volatile compound is settled. The Langmuir model is acceptable to fit the isotherms. Dynamic tests were performed with three columns and different operating conditions. A database of concentration profiles and breakthroughs were obtained. The resolution of the set of differential equations is acceptable to fit the dynamics tests and could be used for a full-scale adsorber.

Keywords: activated carbon, groundwater, perchloroethylene, full-scale

Procedia PDF Downloads 428
1234 Methods for Business Process Simulation Based on Petri Nets

Authors: K. Shoylekova, K. Grigorova

Abstract:

The Petri nets are the first standard for business process modeling. Most probably, it is one of the core reasons why all new standards created afterwards have to be so reformed as to reach the stage of mapping the new standard onto Petri nets. The paper presents a Business process repository based on a universal database. The repository provides the possibility the data about a given process to be stored in three different ways. Business process repository is developed with regard to the reformation of a given model to a Petri net in order to be easily simulated two different techniques for business process simulation based on Petri nets - Yasper and Woflan are discussed. Their advantages and drawbacks are outlined. The way of simulating business process models, stored in the Business process repository is shown.

Keywords: business process repository, petri nets, simulation, Woflan, Yasper

Procedia PDF Downloads 371
1233 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 110
1232 The Relationship between Elderly People with Depression and Built Environment Factors

Authors: Hung-Chun Lin, Tzu-Yuan Chao

Abstract:

As the population aging has become an inevitable trend globally, issues of improving the well-being of elderly people in urban areas have been a challenging task for urban planners. Recent studies of ageing trend have also expended to explore the relationship between the built environment and mental condition of elderly people. These studies have proved that even though the built environment may not necessarily play the decisive role in affecting mental health, it can have positive impacts on individual mental health by promoting social linkages and social networks among older adults. There has been a great amount of relevant research examined the impact of the built environment attributes on depression in the elderly; however, most were conducted in the Western countries. Little attention has been paid in Asian cities with contrarily high density and mix-use urban contexts such as Taiwan regarding how the built environment attributes related to depression in elderly people. Hence, more empirical cross-principle studies are needed to explore the possible impacts of Asia urban characteristics on older residents’ mental condition. This paper intends to focus on Tainan city, the fourth biggest metropolis in Taiwan. We first analyze with data from National Health Insurance Research Database to pinpoint the empirical study area where residing most elderly patients, aged over 65, with depressive disorders. Secondly, we explore the relationship between specific attributes of the built environment collected from previous studies and elderly individuals who suffer from depression, under different socio-cultural and networking circumstances. To achieve the results, the research methods adopted in this study include questionnaire and database analysis, and the results will be proceeded by correlation analysis. In addition, through literature review, by generalizing the built environment factors that have been used in Western research to evaluate the relationship between built environment and older individuals with depressive disorders, a set of local evaluative indicators of the built environment for future studies will be proposed as well. In order to move closer to develop age-friendly cities and improve the well-being for the elderly in Taiwan, the findings of this paper can provide empirical results to grab planners’ attention for how built environment makes the elderly feel and to reconsider the relationship between them. Furthermore, with an interdisciplinary topic, the research results are expected to make suggestions for amending the procedures of drawing up an urban plan or a city plan from a different point of view.

Keywords: built environment, depression, elderly, Tainan

Procedia PDF Downloads 124
1231 The Impact of a Prior Haemophilus influenzae Infection in the Incidence of Prostate Cancer

Authors: Maximiliano Guerra, Lexi Frankel, Amalia D. Ardeljan, Sarah Ghali, Diya Kohli, Omar M. Rashid.

Abstract:

Introduction/Background: Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of these bacteria throughout the body. This can result in a proinflammatory state and colonization particularly in the lungs. Recent studies have failed to determine a link between H. Influenzae colonization and prostate cancer, despite previous research demonstrating the presence of proinflammatory states in preneoplastic and neoplastic prostate lesions. Given these contradictory findings, the primary goal of this study was to evaluate the correlation between H. Influenzae infection and the incidence of prostate cancer. Methods: To evaluate the incidence of Haemophilus influenzae infection and the development of prostate cancer in the future we used data provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. We were afforded access to this database by Holy Cross Health, Fort Lauderdale for the express purpose of academic research. Standard statistical methods were employed in this study including Pearson’s chi-square tests. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 13, 691 patients in both the control and C. difficile infected groups, respectively. The two groups were matched by age range and CCI score. In the Haemophilus influenzae infected group, the incidence of prostate cancer was 1.46%, while the incidence of the prostate cancer control group was 4.56%. The observed difference in cancer incidence was determined to be a statistically significant p-value (< 2.2x10^-16). This suggests that patients with a history of C. difficile have less risk of developing prostate cancer (OR 0.425, 95% CI: 0.382 - 0.472). Treatment bias was considered, the data was analyzed and resulted in two groups matched groups of 3,208 patients in both the infected with H. Influenzae treated group and the control who used the same medications for a different cause. Patients infected with H. Influenzae and treated had an incidence of prostate cancer of 2.49% whereas the control group incidence of prostate cancer was 4.92% with a p-value (< 2.2x10^-16) OR 0.455 CI 95% (0.526 -0.754), proving that the initial results were not due to the use of medications. Conclusion: The findings of our study reveal a statistically significant correlation between H. Influenzae infection and a decreased incidence of prostate cancer. Our findings suggest that prior infection with H. Influenzae may confer some degree of protection to patients and reduce their risk for developing prostate cancer. Future research is recommended to further characterize the potential role of Haemophilus influenzae in the pathogenesis of prostate cancer.

Keywords: Haemophilus Influenzae, incidence, prostate cancer, risk.

Procedia PDF Downloads 198
1230 A Non-Invasive Blood Glucose Monitoring System Using near-Infrared Spectroscopy with Remote Data Logging

Authors: Bodhayan Nandi, Shubhajit Roy Chowdhury

Abstract:

This paper presents the development of a portable blood glucose monitoring device based on Near-Infrared Spectroscopy. The system supports Internet connectivity through WiFi and uploads the time series data of glucose concentration of patients to a server. In addition, the server is given sufficient intelligence to predict the future pathophysiological state of a patient given the current and past pathophysiological data. This will enable to prognosticate the approaching critical condition of the patient much before the critical condition actually occurs.The server hosts web applications to allow authorized users to monitor the data remotely.

Keywords: non invasive, blood glucose concentration, microcontroller, IoT, application server, database server

Procedia PDF Downloads 222
1229 Prediction of Coronary Heart Disease Using Fuzzy Logic

Authors: Elda Maraj, Shkelqim Kuka

Abstract:

Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.

Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model

Procedia PDF Downloads 162
1228 Incidence of Breast Cancer and Enterococcus Infection: A Retrospective Analysis

Authors: Matthew Cardeiro, Amalia D. Ardeljan, Lexi Frankel, Dianela Prado Escobar, Catalina Molnar, Omar M. Rashid

Abstract:

Introduction: Enterococci comprise the natural flora of nearly all animals and are ubiquitous in food manufacturing and probiotics. However, its role in the microbiome remains controversial. The gut microbiome has shown to play an important role in immunology and cancer. Further, recent data has suggested a relationship between gut microbiota and breast cancer. These studies have shown that the gut microbiome of patients with breast cancer differs from that of healthy patients. Research regarding enterococcus infection and its sequala is limited, and further research is needed in order to understand the relationship between infection and cancer. Enterococcus may prevent the development of breast cancer (BC) through complex immunologic and microbiotic adaptations following an enterococcus infection. This study investigated the effect of enterococcus infection and the incidence of BC. Methods: A retrospective study (January 2010- December 2019) was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using a Humans Health Insurance Database. International Classification of Disease (ICD) 9th and 10th codes, Current Procedural Terminology (CPT), and National Drug Codes were used to identify BC diagnosis and enterococcus infection. Patients were matched for age, sex, Charlson Comorbidity Index (CCI), antibiotic treatment, and region of residence. Chi-squared, logistic regression, and odds ratio were implemented to assess the significance and estimate relative risk. Results: 671 out of 28,518 (2.35%) patients with a prior enterococcus infection and 1,459 out of 28,518 (5.12%) patients without enterococcus infection subsequently developed BC, and the difference was statistically significant (p<2.2x10⁻¹⁶). Logistic regression also indicated enterococcus infection was associated with a decreased incidence of BC (RR=0.60, 95% CI [0.57, 0.63]). Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 398 out of 11,523 (3.34%) patients with a prior enterococcus infection and treated with antibiotics were compared to 624 out of 11,523 (5.41%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed BC. Results remained statistically significant (p<2.2x10-16) with a relative risk of 0.57 (95% CI [0.54, 0.60]). Conclusion & Discussion: This study shows a statistically significant correlation between enterococcus infection and a decrease incidence of breast cancer. Further exploration is needed to identify and understand not only the role of enterococcus in the microbiome but also the protective mechanism(s) and impact enterococcus infection may have on breast cancer development. Ultimately, further research is needed in order to understand the complex and intricate relationship between the microbiome, immunology, bacterial infections, and carcinogenesis.

Keywords: breast cancer, enterococcus, immunology, infection, microbiome

Procedia PDF Downloads 174
1227 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 439
1226 Antimicrobial and Antioxidant Activities of Actinobacteria Isolated from the Pollen of Pinus sylvestris Grown on the Lake Baikal Shore

Authors: Denis V. Axenov-Gribanov, Irina V. Voytsekhovskaya, Evgenii S. Protasov, Maxim A. Timofeyev

Abstract:

Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Pinus sylvestris trees growing on the shore of the ancient Lake Baikal in Siberia. The actinobacterial strains were isolated on solid nutrient MS media and Czapek agar supplemented with cycloheximide and phosphomycin. Identification of actinobacteria was carried out by 16S rRNA gene sequencing and further analysis of the evolutionary history. Four different liquid and solid media (NL19, DNPM, SG and ISP) were tested for metabolite production. The metabolite extracts produced by the isolated strains were tested for antibacterial and antifungal activities. Also, antiradical activity of crude extracts was carried out. Strain Streptomyces sp. IB 2014 I 74-3 that active against Gram-negative bacteria was selected for dereplication analysis with using the high-yield liquid chromatography with mass-spectrometry. Mass detection was performed in both positive and negative modes, with the detection range set to 160–2500 m/z. Data were collected and analyzed using Bruker Compass Data Analysis software, version 4.1. Dereplication was performed using the Dictionary of Natural Products (DNP) database version 6.1 with the following search parameters: accurate molecular mass, absorption spectra and source of compound isolation. Thus, in addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. Several of the selected strains were deposited in the Russian Collection of Agricultural Microorganisms (RCAM), St. Petersburg, Russia. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. Moreover, extracts of several strains demonstrated high antioxidant activity. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens. Dereplication of the secondary metabolites of the strain Streptomyces sp. IB 2014 I 74-3 was resulted in the fact that a total of 59 major compounds were detected in the culture liquid extract of strain cultivated in ISP medium. Eight compounds were preliminarily identified based on characteristics described in the Dictionary of Natural Products database, using the search parameters Streptomyces sp. IB 2014 I 74-3 was found to produce saframycin A, Y3 and S; 2-amino-3-oxo-3H-phenoxazine-1,8-dicarboxylic acid; galtamycinone; platencin A4-13R and A4-4S; ganefromycin d1; the antibiotic SS 8201B; and streptothricin D, 40-decarbamoyl, 60-carbamoyl. Moreover, forty-nine of the 59 compounds detected in the extract examined in the present study did not result in any positive hits when searching within the DNP database and could not be identified based on available mass-spec data. Thus, these compounds might represent new findings.

Keywords: actinobacteria, Baikal Lake, biodiversity, male cones, Pinus sylvestris

Procedia PDF Downloads 234
1225 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 354
1224 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 285
1223 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 240
1222 The Incidence of Prostate Cancer in Previous Infected E. Coli Population

Authors: Andreea Molnar, Amalia Ardeljan, Lexi Frankel, Marissa Dallara, Brittany Nagel, Omar Rashid

Abstract:

Background: Escherichia coli is a gram-negative, facultative anaerobic bacteria that belongs to the family Enterobacteriaceae and resides in the intestinal tracts of individuals. E.Coli has numerous strains grouped into serogroups and serotypes based on differences in antigens in their cell walls (somatic, or “O” antigens) and flagella (“H” antigens). More than 700 serotypes of E. coli have been identified. Although most strains of E. coli are harmless, a few strains, such as E. coli O157:H7 which produces Shiga toxin, can cause intestinal infection with symptoms of severe abdominal cramps, bloody diarrhea, and vomiting. Infection with E. Coli can lead to the development of systemic inflammation as the toxin exerts its effects. Chronic inflammation is now known to contribute to cancer development in several organs, including the prostate. The purpose of this study was to evaluate the correlation between E. Coli and the incidence of prostate cancer. Methods: Data collected in this cohort study was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate patients infected with E.Coli infection and prostate cancer using the International Classification of Disease (ICD-10 and ICD-9 codes). Permission to use the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Data analysis was conducted through the use of standard statistical methods. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 81, 037 patients after matching in both infected and control groups, respectively. The two groups were matched by Age Range and CCI score. The incidence of prostate cancer was 2.07% and 1,680 patients in the E. Coli group compared to 5.19% and 4,206 patients in the control group. The difference was statistically significant by a p-value p<2.2x10-16 with an Odds Ratio of 0.53 and a 95% CI. Based on the specific treatment for E.Coli, the infected group vs control group were matched again with a result of 31,696 patients in each group. 827 out of 31,696 (2.60%) patients with a prior E.coli infection and treated with antibiotics were compared to 1634 out of 31,696 (5.15%) patients with no history of E.coli infection (control) and received antibiotic treatment. Both populations subsequently developed prostate carcinoma. Results remained statistically significant (p<2.2x10-16), Odds Ratio=0.55 (95% CI 0.51-0.59). Conclusion: This retrospective study shows a statistically significant correlation between E.Coli infection and a decreased incidence of prostate cancer. Further evaluation is needed in order to identify the impact of E.Coli infection and prostate cancer development.

Keywords: E. Coli, prostate cancer, protective, microbiology

Procedia PDF Downloads 216
1221 International Trends in Sustainability Reporting Using Global Reporting Initiatives

Authors: Ramona Zharfpeykan

Abstract:

This study analyses the trend and nature of sustainability key performance indicators (KPIs) reporting in firms globally. It presents both trend and panel data of sustainability reports of 798 firms in the Global Reporting Initiative (GRI) database from 2010 to 2014. The results show some fluctuations in the frequency of sustainability KPI reporting globally across the time while the major focus of reports in firms stayed almost the same. It made us further analyse this trend and found that there are some indicators, such as 'environmental protect expenses' and 'number of grievances', that was barely reported over this period along with some highly popular ones such as 'direct economic value' and 'employment rate'. We could not find any statistical correlation between the KPI reporting percentage and the firms’ industries generally and neither if they belong to environmentally sensitive industries.

Keywords: global reporting initiatives, sustainability reporting, sustainability KPI, trends of sustainability reporting

Procedia PDF Downloads 142
1220 Counterfeit Product Detection Using Block Chain

Authors: Sharanya C. H., Pragathi M., Vathsala R. S., Theja K. V., Yashaswini S.

Abstract:

Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original.

Keywords: blockchain, ethereum, QR code

Procedia PDF Downloads 178