Search results for: protein matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4498

Search results for: protein matrix

358 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology

Authors: Tatsuhiko Aizawa, Hiroshi Morita

Abstract:

The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.

Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch

Procedia PDF Downloads 89
357 Impact of Autoclave Sterilization of Gelatin on Endotoxin Level and Physical Properties Compared to Surfactant Purified Gelatins

Authors: Jos Olijve

Abstract:

Introduction and Purpose: Endotoxins are found in the outer membrane of gram-negative bacteria and have profound in vitro and in vivo responses. They can trigger strong immune responses and negatively affect various cellar activities particular cells expressing toll-like receptors. They are therefore unwanted contaminants of biomaterials sourced from natural raw materials, and their activity must be as low as possible. Collagen and gelatin are natural extracellular matrix components and have, due to their low allergenic potential, suitable biological properties, and tunable physical characteristics, high potential in biomedical applications. The purpose of this study was to determine the influence of autoclave sterilization of gelatin on physical properties and endotoxin level compared to surfactant purified gelatin. Methods: Type A gelatin from Sigma-Aldrich (G1890) with endotoxin level of 35000 endotoxin units (EU) per gram gelatin and type A gelatins from Rousselot Gent with endotoxin activity of 30000 EU per gram were used. A 10 w/w% G1890 gelatin solution was autoclave sterilized during 30 minutes at 121°C and 1 bar over pressure. The physical properties and the endotoxin level of the sterilized G1890 gelatin were compared to a type A gelatin from Rousselot purified with Triton X100 surfactant. The Triton X100 was added to a concentration of 0.5 w/w% which is above the critical micellar concentration. The gelatin surfactant mixtures were kept for 30-45 minutes under constant stirring at 55-60°C. The Triton X100 was removed by active carbon filtration. The endotoxin levels of the gelatins were measured using the Endozyme recombinant factor C method from Hyglos GmbH (Germany). Results and Discussion: Autoclave sterilization significantly affect the physical properties of gelatin. Molecular weight of G1890 decreased from 140 to 50kDa, and gel strength decreased from 300 to 40g. The endotoxin level of the gelatin reduced after sterilization from 35000 EU/g to levels of 400-500 EU/g. These endotoxin levels are however still far above the upper endotoxin level of 0.05 EU/ml, which resembles 5 EU/g gelatin based on a 1% gelatin solution, to avoid cell proliferation alteration. Molecular weight and gel strength of Rousselot gelatin was not altered after Triton X100 purification and remained 150kDa and 300g respectively. The endotoxin levels of Triton X100 purified Rousselot gelatin was < 5EU/g gelatin. Conclusion: Autoclave sterilization of gelatin is, in comparison to Triton X100 purification, not efficient to inactivate endotoxin levels in gelatin to levels below the upper limit to avoid cell proliferation alteration. Autoclave sterilization gave a significant decrease in molecular weight and gel strength which makes autoclave sterilized gelatin, in comparison to Triton X100 purified gelatin, not suitable for 3D printing.

Keywords: endotoxin, gelatin, molecular weight, sterilization, Triton X100

Procedia PDF Downloads 234
356 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 156
355 Home-Based Care with Follow-Up at Outpatient Unit or Community-Follow-Up Center with/without Food Supplementation and/or Psychosocial Stimulation of Children with Moderate Acute Malnutrition in Bangladesh

Authors: Md Iqbal Hossain, Tahmeed Ahmed, Kenneth H. Brown

Abstract:

Objective: To assess the effect of community-based follow up, with or without food-supplementation and/or psychosocial stimulation, as an alternative to current hospital-based follow-up of children with moderate-acute-malnutrition (WHZ < -2 to -3) (MAM). Design/methods: The study was conducted at the ICDDR,B Dhaka Hospital and in four urban primary health care centers of Dhaka, Bangladesh during 2005-2007. The efficacy of five different randomly assigned interventions was compared with respect to the rate of completion of follow-up, growth and morbidity in 227 MAM children aged 6-24 months who were initially treated at ICDDR,B for diarrhea and/or other morbidities. The interventions were: 1) Fortnightly follow-up care (FFC) at the ICDDR,B’s outpatient-unit, including growth monitoring, health education, and micro-nutrient supplementation (H-C, n=49). 2) FFC at community follow-up unit (CNFU) [established in the existing urban primary health-care centers close to the residence of the child] but received the same regimen as H-C (C-C, n=53). 3) As per C-C plus cereal-based supplementary food (SF) (C-SF, n=49). The SF packets were distributed on recruitment and at every visit in CNFU [@1 packet/day for 6–11 and 2 packets/day for 12-24 month old children. Each packet contained 20g toasted rice-powder, 10g toasted lentil-powder, 5g molasses, and 3g soy bean oil, to provide a total of ~ 150kcal with 11% energy from protein]. 4) As per C-C plus psychosocial stimulation (PS) (C-PS, n=43). PS consisted of child-stimulation and parental-counseling conducted by trained health workers. 5) As per C-C plus both SF+PS (C-SF+PS, n=33). Results: A total of 227children (48.5% female), with a mean ± SD age of 12.6 ±3.8 months, and WHZ of - 2.53±0.28 enrolled. Baseline characteristics did not differ by treatment group. The rate of spontaneous attendance at scheduled follow-up visits gradually decreased in all groups. Follow-up attendance and gain in weight and length were greater in groups C-SF, C-SF+PS, and C-PS than C-C, and these indicators were observed least in H-C. Children in the H-C group more often suffered from diarrhea (25 % vs. 4-9%) and fever (28% vs. 8-11%) than other groups (p < 0.05). Children who attended at least five of the total six scheduled follow-up visits gained more in weight (median: 0.86 vs. 0.62 kg, p=0.002), length (median: 2.4 vs. 2.0 cm, p=0.009) than those who attended fewer. Conclusions: Community-based service delivery, especially including supplementary food with or without psychosocial stimulation, permits better rehabilitation of children with MAM compared to current hospital outpatients-based care. By scaling the community-based follow-up including food supplementation with or without psychosocial stimulation, it will be possible to rehabilitate a greater number of MAM children in a better way.

Keywords: community-based management, moderate acute malnutrition, psychosocial stimulation, supplementary food

Procedia PDF Downloads 441
354 Evaluation of Rhizobia for Nodulation, Shoot and Root Biomass from Host Range Studies Using Soybean, Common Bean, Bambara Groundnut and Mung Bean

Authors: Sharon K. Mahlangu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Rural households in Africa depend largely on legumes as a source of high-protein food due to N₂-fixation by rhizobia when they infect plant roots. However, the legume/rhizobia symbiosis can exhibit some level of specificity such that some legumes may be selectively nodulated by only a particular group of rhizobia. In contrast, some legumes are highly promiscuous and are nodulated by a wide range of rhizobia. Little is known about the nodulation promiscuity of bacterial symbionts from wild legumes such as Aspalathus linearis, especially if they can nodulate cultivated grain legumes such as cowpea and Kersting’s groundnut. Determining the host range of the symbionts of wild legumes can potentially reveal novel rhizobial strains that can be used to increase nitrogen fixation in cultivated legumes. In this study, bacteria were isolated and tested for their ability to induce root nodules on their homologous hosts. Seeds were surface-sterilized with alcohol and sodium hypochlorite and planted in sterile sand contained in plastic pots. The pot surface was covered with sterile non-absorbent cotton wool to avoid contamination. The plants were watered with nitrogen-free nutrient solution and sterile water in alternation. Three replicate pots were used per isolate. The plants were grown for 90 days in a naturally-lit glasshouse and assessed for nodulation (nodule number and nodule biomass) and shoot biomass. Seven isolates from each of Kersting’s groundnut and cowpea and two from Rooibos tea plants were tested for their ability to nodulate soybean, mung bean, common bean and Bambara groundnut. The results showed that of the isolates from cowpea, where VUSA55 and VUSA42 could nodulate all test host plants, followed by VUSA48 which nodulated cowpea, Bambara groundnut and soybean. The two isolates from Rooibos tea plants nodulated Bambara groundnut, soybean and common bean. However, isolate L1R3.3.1 also nodulated mung bean. There was a greater accumulation of shoot biomass when cowpea isolate VUSA55 nodulated common bean. Isolate VUSA55 produced the highest shoot biomass, followed by VUSA42 and VUSA48. The two Kersting’s groundnut isolates, MGSA131 and MGSA110, accumulated average shoot biomass. In contrast, the two Rooibos tea isolates induced a higher accumulation of biomass in Bambara groundnut, followed by common bean. The results suggest that inoculating these agriculturally important grain legumes with cowpea isolates can contribute to improved soil fertility, especially soil nitrogen levels.

Keywords: legumes, nitrogen fixation, nodulation, rhizobia

Procedia PDF Downloads 222
353 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 354
352 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
351 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 164
350 The Environmental Impact Assessment of Land Use Planning (Case Study: Tannery Industry in Al-Garma District)

Authors: Husam Abdulmuttaleb Hashim

Abstract:

The environmental pollution problems represent a great challenge to the world, threatening to destroy all the evolution that mankind has reached, the organizations and associations that cares about environment are trying to warn the world from the forthcoming danger resulted from excessive use of nature resources and consuming it without looking to the damage happened as a result of unfair use of it. Most of the urban centers suffers from the environmental pollution problems and health, economic, and social dangers resulted from this pollution, and while the land use planning is responsible for distributing different uses in urban centers and controlling the interactions between these uses to reach a homogeneous and perfect state for the different activities in cities, the occurrence of environmental problems in the shade of existing land use planning operation refers to the disorder or insufficiency in this operation which leads to presence of such problems, and this disorder lays in lack of sufficient importance to the environmental considerations during the land use planning operations and setting up the master plan, so the research start to study this problem and finding solutions for it, the research assumes that using accurate and scientific methods in early stages of land use planning operation will prevent occurring of environmental pollution problems in the future, the research aims to study and show the importance of the environmental impact assessment method (EIA) as an important planning tool to investigate and predict the pollution ranges of the land use that has a polluting pattern in land use planning operation. This research encompasses the concept of environmental assessment and its kinds and clarifies environmental impact assessment and its contents, the research also dealt with urban planning concept and land use planning, it also dealt with the current situation of the case study (Al-Garma district) and the land use planning in it and explain the most polluting use on the environment which is the industrial land use represented in the tannery industries and then there was a stating of current situation of this land use and explaining its contents and environmental impacts resulted from it, and then we analyzed the tests applied by the researcher for water and soil, and perform environmental evaluation through applying environmental impact assessment matrix using the direct method to reveal the pollution ranges on the ambient environment of industrial land use, and we also applied the environmental and site limits and standards by using (GIS) and (AUTOCAD) to select the site of the best alternative of the industrial region in Al-Garma district after the research approved the unsuitability of its current site location for the environmental and site limitations, the research conducted some conclusions and recommendations regard clarifying the concluded facts and to set the proper solutions.

Keywords: EIA, pollution, tannery industry, land use planning

Procedia PDF Downloads 450
349 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis

Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini

Abstract:

H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.

Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry

Procedia PDF Downloads 155
348 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health

Authors: R. Sanchez-Salcedo, N. H. Voelcker

Abstract:

Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.

Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs

Procedia PDF Downloads 20
347 Antimicrobial and Antibiofilm Properties of Fatty Acids Against Streptococcus Mutans

Authors: A. Mulry, C. Kealey, D. B. Brady

Abstract:

Planktonic bacteria can form biofilms which are microbial aggregates embedded within a matrix of extracellular polymeric substances (EPS). They can be found attached to abiotic or biotic surfaces. Biofilms are responsible for oral diseases such as dental caries, gingivitis and the progression of periodontal disease. Biofilms can resist 500 to 1000 times the concentration of biocides and antibiotics used to kill planktonic bacteria. Biofilm development on oral surfaces involves four stages, initial attachment, early development, maturation and dispersal of planktonic cells. The Minimum Inhibitory Concentration (MIC) was determined using a range of saturated and unsaturated fatty acids using the resazurin assay, followed by serial dilution and spot plating on BHI agar plates to establish the Minimum Bactericidal Concentration (MBC). Log reduction of bacteria was also evaluated for each fatty acid. The Minimum Biofilm Inhibition Concentration (MBIC) was determined using crystal violet assay in 96 well plates on forming and pre-formed S. mutans biofilms using BHI supplemented with 1% sucrose. Saturated medium-chain fatty acids Octanoic (C8.0), Decanoic (C10.0) and Undecanoic acid (C11.0) do not display strong antibiofilm properties; however, Lauric (C12.0) and Myristic (C14.0) display moderate antibiofilm properties with 97.83% and 97.5% biofilm inhibition with 1000 µM respectively. Monounsaturated, Oleic acid (C18.1) and polyunsaturated large chain fatty acids, Linoleic acid (C18.2) display potent antibiofilm properties with biofilm inhibition of 99.73% at 125 µM and 100% at 65.5 µM, respectively. Long-chain polyunsaturated Omega-3 fatty acids α-Linoleic (C18.3), Eicosapentaenoic Acid (EPA) (C20.5), Docosahexaenoic Acid (DHA) (C22.6) have displayed strong antibiofilm efficacy from concentrations ranging from 31.25-250µg/ml. DHA is the most promising antibiofilm agent with an MBIC of 99.73% with 15.625µg/ml. This may be due to the presence of six double bonds and the structural orientation of the fatty acid. To conclude, fatty acids displaying the most antimicrobial activity appear to be medium or long-chain unsaturated fatty acids containing one or more double bonds. Most promising agents include Omega-3-fatty acids Linoleic, α-Linoleic, EPA and DHA, as well as Omega-9 fatty acid Oleic acid. These results indicate that fatty acids have the potential to be used as antimicrobials and antibiofilm agents against S. mutans. Future work involves further screening of the most potent fatty acids against a range of bacteria, including Gram-positive and Gram-negative oral pathogens. Future work will involve incorporating the most effective fatty acids onto dental implant devices to prevent biofilm formation.

Keywords: antibiofilm, biofilm, fatty acids, S. mutans

Procedia PDF Downloads 160
346 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect

Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz

Abstract:

Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.

Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility

Procedia PDF Downloads 268
345 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 107
344 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 234
343 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 138
342 L. rhamnosus GG Lysate Can Inhibit Cytotoxic Effects of S. aureus on Keratinocytes in vitro

Authors: W. Mohammed Saeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill

Abstract:

In the gut, probiotics have been shown to protect epithelial cells from pathogenic bacteria through a number of mechanisms: 1-Increasing epithelial barrier function, 2-Modulation of the immune response especially innate immune response, 3-Inhibition of pathogen adherence and down regulation of virulence factors. Since probiotics have positive impacts on the gut, their potential effects on other body tissues, such as skin have begun to be investigated. The purpose of this project is to characterize the potential of probiotic bacteria lysate as therapeutic agent for preventing or reducing the S. aureus infection. Normal human primary keratinocytes (KCs) were exposed to S. aureus (106/ml) in the presence or absence of L. rhamnosus GG lysate (extracted from 108cfu/ml). The viability of the KCs was measured after 24 hours using a trypan blue exclusion assay. When KCs were treated with S aureus alone, only 25% of the KCs remained viable at 24 hours post infection. However, in the presence of L. rhamnosus GG lysate the viability of pathogen infected KCs increased to 58% (p=0.008, n=3). Furthermore, when KCs co-exposed, pre- exposed or post-exposed to L. rhamnosus GG lysate, the viability of the KCs increased to ≈60%, the L. rhamnosus GG lysate was afforded equal protection in different conditions. These data suggests that two possible separate mechanisms are involved in the protective effects of L. rhamnosus GG such as reducing S. aureus growth, or inhibiting of pathogenic adhesion. Interestingly, a lysate of L rhamnosus GG provided significant reduction in S. aureus growth and adhesion of S. aureus that being viable following 24 hours incubation with S aureus. Therefore, a series of Liquid Chromatography (RP-LC) methods were adopted to partially purify the lysate in combination with functional assays to elucidate in which fractions the efficacious molecules were contained. In addition, the Mass Spectrometry-based protein sequencing was used to identify putative proteins in the fractions. The data presented from purification process demonstrated that L. rhamnosus GG lysate has the potential to protect keratinocytes from the toxic effects of the skin pathogen, S. aureus. Three potential mechanisms were identified: inhibition of pathogen growth; competitive exclusion; and displacement of the pathogen from keratinocyte binding sites. In this study, ‘moonlight’ proteins were identified in the current study’s MS/MS data for L. rhamnosus GG lysate, which could elucidate the ability of lysate in the competitive exclusion and displacement of S. aureus from keratinocyte binding sites. Taken together, it can be speculated that L. rhamnosus GG lysate utilizes different mechanisms to protect keratinocytes from S. aureus toxicity. The present study indicates that the proteinaceous substances are involved in anti-adhesion activity. This is achieved by displacing the pathogen and preventing the severity of pathogen infection and the moonlight proteins might be involved in inhibiting the adhesion of pathogens.

Keywords: lysate, fractions, adhesion, L. rhamnosus GG, S. aureus toxicity

Procedia PDF Downloads 293
341 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt

Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata

Abstract:

Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).

Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically

Procedia PDF Downloads 303
340 Traditional Medicine in Children: A Significant Cause of Morbidity and Mortality

Authors: Atitallah Sofien, Bouyahia Olfa, Romdhani Meriam, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Traditional medicine refers to a diverse range of therapeutic practices and knowledge systems that have been employed by different cultures over an extended period to uphold and rejuvenate health. These practices can involve herbal remedies, acupuncture, massage, and alternative healing methods that deviate from conventional medical approaches. In Tunisia, we often use unidentified utensils to scratch the oral cavity internally in infants in order to widen the oral cavity for better breathing and swallowing. However, these practices can be risky and may jeopardize the patients' prognosis or even their lives. Aim: This is the case of a nine-month-old infant, admitted to the pediatric department and subsequently to the intensive care unit due to a peritonsillar abscess following the utilization of an unidentifiable tool to scrape the interior of the oral cavity. Case Report: This is a 9-month-old infant with no particular medical history, admitted for high respiratory distress and a fever persisting for 4 days. On clinical examination, he had a respiratory rate of 70 cycles per minute with an oxygen saturation of 97% and subcostal retractions, along with a heart rate of 175 beats per minute. His white blood cell count was 40,960/mm³, and his C-reactive protein was 250 mg/L. Given the severity of the clinical presentation, the infant was transferred to the intensive care unit, intubated, and mechanically ventilated. A cervical-thoracic CT scan was performed, revealing a ruptured 18 mm left peritonsillar abscess in the oropharynx associated with cellulitis of the retropharyngeal space. The oto-rhino-laryngoscopic examination revealed an asymmetry involving the left lateral wall of the oropharynx with the presence of a fistula behind the posterior pillar. Dissection of the collection cavity was performed, allowing the drainage of 2 ml of pus. The culture was negative. The patient received cefotaxime in combination with metronidazole and gentamicin for a duration of 10 days, followed by a switch to amoxicillin-clavulanic acid for 7 days. The patient was extubated after 4 days of treatment, and the clinical and radiological progress was favorable. Conclusions: Traditional medicine remains risky due to the lack of scientific evidence and the potential for injuries and transmission of infectious diseases, especially in children, who constitute a vulnerable population. Therefore, parents should consult healthcare professionals and rely on evidence-based care.

Keywords: children, peritonsillar abscess, traditional medicine, respiratory distress

Procedia PDF Downloads 64
339 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 295
338 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 498
337 Fibrin Glue Reinforcement of Choledochotomy Closure Suture Line for Prevention of Bile Leak in Patients Undergoing Laparoscopic Common Bile Duct Exploration with Primary Closure: A Pilot Study

Authors: Rahul Jain, Jagdish Chander, Anish Gupta

Abstract:

Introduction: Laparoscopic common bile duct exploration (LCBDE) allows cholecystectomy and the removal of common bile duct (CBD) stones to be performed during the same sitting, thereby decreasing hospital stay. CBD exploration through choledochotomy can be closed primarily with an absorbable suture material, but can lead to biliary leakage postoperatively. In this study we tried to find a solution to further lower the incidence of bile leakage by using fibrin glue to reinforce the sutures put on choledochotomy suture line. It has haemostatic and sealing action, through strengthening the last step of the physiological coagulation and biostimulation, which favours the formation of new tissue matrix. Methodology: This study was conducted at a tertiary care teaching hospital in New Delhi, India, from 2011 to 2013. 20 patients with CBD stones documented on MRCP with CBD diameter of 9 mm or more were included in this study. Patients were randomized into two groups namely Group A in which choledochotomy was closed with polyglactin 4-0 suture and suture line reinforced with fibrin glue, and Group ‘B’ in which choledochotomy was closed with polyglactin 4-0 suture alone. Both the groups were evaluated and compared on clinical parameters such as operative time, drain content, drain output, no. of days drain was required, blood loss & transfusion requirements, length of postoperative hospital stay and conversion to open surgery. Results: The operative time for Group A ranged from 60 to 210 min (mean 131.50 min) and Group B 65 to 300 min (mean 140 minutes). The blood loss in group A ranged from 10 to 120 ml (mean 51.50 ml), in group B it ranged from 10 to 200 ml (mean 53.50 ml). In Group A, there was no case of bile leak but there was bile leak in 2 cases in Group B, minimum 0 and maximum 900 ml with a mean of 97 ml and p value of 0.147 with no statistically significant difference in bile leak in test and control groups. The minimum and maximum serous drainage in Group A was nil & 80 ml (mean 11 ml) and in Group B was nil & 270 ml (mean 72.50 ml). The p value came as 0.028 which is statistically significant. Thus serous leakage in Group A was significantly less than in Group B. The drains in Group A were removed from 2 to 4 days (mean: 3 days) while in Group B from 2 to 9 days (mean: 3.9 days). The patients in Group A stayed in hospital post operatively from 3 to 8 days (mean: 5.30) while in Group B it ranged from 3 to 10 days with a mean of 5 days. Conclusion: Fibrin glue application on CBD decreases bile leakage but in statistically insignificant manner. Fibrin glue application on CBD can significantly decrease post operative serous drainage after LCBDE. Fibrin glue application on CBD is safe and easy technique without any significant adverse effects and can help less experienced surgeons performing LCBDE.

Keywords: bile leak, fibrin glue, LCBDE, serous leak

Procedia PDF Downloads 215
336 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 424
335 Archaic Ontologies Nowadays: Music of Rituals

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

Many of the interrogations or dilemmas of the contemporary world found the answer in what was generically called the appeal to matrix. This genuine spiritual exercise of re-connection of the present to origins, to the primary source, revealed the ontological condition of timelessness, ahistorical, immutable (epi)phenomena, of those pure essences concentrated in the archetypal-referential layer of the human existence. The musical creation was no exception to this trend, the impasse generated by the deterministic excesses of the whole serialism or, conversely, by some questionable results of the extreme indeterminism proper to the avant-garde movements, stimulating the orientation of many composers to rediscover a universal grammar, as an emanation of a new ‘collective’ order (reverse of the utopian individualism). In this context, the music of oral tradition and therefore the world of the ancient modes represented a true revelation for the composers of the twentieth century, who were suddenly in front of some unsuspected (re)sources, with a major impact on all levels of edification of the musical work: morphology, syntax, timbrality, semantics etc. For the contemporary Romanian creators, the music of rituals, existing in the local archaic culture, opened unsuspected perspectives for which it meant to be a synthetic, inclusive and recoverer vision, where the primary (archetypal) genuine elements merge with the latest achievements of language of the European composers. Thus, anchored in a strong and genuine modal source, the compositions analysed in this paper evoke, in a manner as modern as possible, the atmosphere of some ancestral rituals such as: the invocation of rain during the drought (Paparudele, Scaloianul), funeral ceremony (Bocetul), traditions specific to the winter holidays and new year (Colinda, Cântecul de stea, Sorcova, Folklore traditional dances) etc. The reactivity of those rituals in the sound context of the twentieth century meant potentiating or resizing the archaic spirit of the primordial symbolic entities, in terms of some complexity levels generated by the technique of harmonies of chordal layers, of complex aggregates (gravitational or non-gravitational, geometric), of the mixture polyphonies and with global effect (group, mass), by the technique of heterophony, of texture and cluster, leading to the implementation of some processes of collective improvisation and instrumental theatre.

Keywords: archetype, improvisation, polyphony, ritual, instrumental theatre

Procedia PDF Downloads 305
334 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 277
333 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems

Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue

Abstract:

The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.

Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure

Procedia PDF Downloads 323
332 Physico-Chemical and Biotechnological Characterization of Sheep’s Milk (Ovis aries) by Three Medicinal Plants Extracts

Authors: Fatima Bouazza, Khadija Khedid, Lamiae Amallah, Aziz Mouhaddach, Basma Boukour, Jihane Ennadir, Rachida Hassikou

Abstract:

In order to combine milk and its derived products conservation and flavoring, Moroccans often used aromatic and medicinal plants. These plant extracts are endowed with several nutritive and therapeutic properties. This study constitutes a first national assessment of physico-chemical quality of sheep’s milk from moroccan Sardi breed and the evaluation of the antibacterial effect of three medicinal plants extracts: Aloe barbadensis Miller, Thymus satureioides and Mentha pulegium on flora isolated from this sheep's milk. 100 milk samples were collected in four regions of Morocco. The bacteria isolated were identified by classical and molecular methods (16S rRNA sequencing) and tested, according to the disk method, for their sensitivity to several antibiotics. The physico-chemical analyzes of sheep’s milk concerned the pH, titratable acidity, density, dry extract, freezing point and contents of: fat, proteins, lactose and calcium. The essential oils (EOs) of T. satureioides and M .pulegium were extracted by hydrodistillation and analyzed by GC / MS, while the Aloe vera leaf pulp was analyzed by the methods of Harborne and HPLC. A total number of 125 bacteria have been identified. Significant resistance to chemical antibiotics has been noted in LABs. The average temperature value of milk is around 57.15 °C, the pH is 6.56, the titratable acidity is around 3.4 ° D, the density is 1.035g / cm³ , the total dry extract is around 169.5g / l, the ash (9.8g / l), the freezing point (- 0.556 °C) while the average fat content is 67.85g / l . The samples richest in fat belong to the region of Settat, cradle of the Sardi breed, with a maximum average value of 74.4g / l. The average protein is 56g / l, lactose (39.92g / l), and calcium (1.855g / l). Analysis of the major components of EOs revealed the dominance of borneol in the case of T. satureioides and of pulegone in M. pulegium. Aloe vera gel contains alkaloids, flavonoids, catechic tannins, saponins and 1.60 µg / ml of aloin. The plant extracts have a bactericidal effect on E. coli, Klebsiellaoxytoca and Staphylococci and bacteriostatic effect on LABs of technological interest (Lactobacillus). As a result of this study, it is believed that the consumption of sardi sheep’s milk would be of nutritional benefit. Its richness in fat and proteins predisposes it for biotechnological development in the manufacture of cheese and yogurt. Also, the use of aromatic and medicinal plants, as natural additives would be of great benefit to flavor and maintain its quality.

Keywords: sheep’s milk, lactic flora, antimicrobial power, aloe barbadensis miller, thymus satureioides, mentha pulegium

Procedia PDF Downloads 126
331 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize

Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu

Abstract:

The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.

Keywords: maize weevil, resistant, parameters, mechanisms, preference

Procedia PDF Downloads 307
330 Epididymis in the Agouti (Dasyprocta azarae): Light Microscope Study

Authors: Bruno C. Schimming, Leandro L. Martins, PatríCia F. F. Pinheiro, Raquel F. Domeniconi, FabríCio S. Oliveira

Abstract:

The agouti is a wildlife rodent that can be used as an alternative source of animal protein and this species has been raised in captivity in Brazil with the aim of providing meat. Thus, the knowledge of their reproductive biology and morphology of the reproductive organs is important. The objective of this study was to describe the morphology of epididymis in the Azara’s agouti, by light microscopy. Samples of epididymis were obtained from five adult Azara’s agouti (Dasyprocta azarae) during castration surgery performed at the Municipal Zoo of Catanduva, Brazil. Fragments of the epididymal regions (initial segment, caput, corpus and cauda) were collected. The biological samples were immediately fixed in paraformaldehyde for 24 hours, followed by histologic procedures comprising embedding in ParaplastTM (Sigma, St. Louis, MO, USA), sections of 5 µm, and staining with HE and Masson’s trichrome. The epididymis was a highly convoluted tubule that links the testis to the vas deferens. The epithelium lining was pseudostratified columnar surrounded by a periductal stroma. The epithelium contains several cell types: principal, basal, apical, clear, and hallo cells. Principal cells were the most abundant cell type. There were observed also migratory cells named halo cells. The caput epididymis was divided into two different regions: initial segment and caput. The initial segment has a very wide lumen, a high epithelium with conspicuous microvilli and the lumen was wide with exfoliated material. The other region of the caput epididymis, showed a lower epithelium when compared with the initial segment, large amounts of spermatozoa in the lumen, and a cytoplasmic vacuolization. This region presented many narrows cells. Many spermatozoa appeared in the lumen of corpus epididymis. The cauda region had a lower epithelium than the other epididymal regions in the agouti. The cauda epithelium presented plicae protruding into the lumen. Large amounts of spermatozoa are also present in the lumen. Small microvilli uniformly arranged so as to form a kind of “brush border” are observed on the apical surface of the cauda epithelium. The pattern of the epithelium lining the duct of the agouti epididymis does not differ greatly from that reported to other mammals, such as domestic and wildlife animals. These findings can cooperate with future investigations especially those related to rational exploration of these animals. All experimental procedures were approved by the institutional ethics committee (CEUA 796/2015). This study was supported by FAPESP (Grants 2015/23822-1).

Keywords: wildlife, testis excurrent ducts, epididymis, morphology

Procedia PDF Downloads 238
329 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa

Authors: Parimelazhagan Thangaraj

Abstract:

Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.

Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic

Procedia PDF Downloads 334