Search results for: artificial recharge site
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4395

Search results for: artificial recharge site

315 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance

Authors: Md Maruf Hossain Koli

Abstract:

The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.

Keywords: child labour, enterprise development, microfinance, youth entrepreneurship

Procedia PDF Downloads 108
314 Product Life Cycle Assessment of Generatively Designed Furniture for Interiors Using Robot Based Additive Manufacturing

Authors: Andrew Fox, Qingping Yang, Yuanhong Zhao, Tao Zhang

Abstract:

Furniture is a very significant subdivision of architecture and its inherent interior design activities. The furniture industry has developed from an artisan-driven craft industry, whose forerunners saw themselves manifested in their crafts and treasured a sense of pride in the creativity of their designs, these days largely reduced to an anonymous collective mass-produced output. Although a very conservative industry, there is great potential for the implementation of collaborative digital technologies allowing a reconfigured artisan experience to be reawakened in a new and exciting form. The furniture manufacturing industry, in general, has been slow to adopt new methodologies for a design using artificial and rule-based generative design. This tardiness has meant the loss of potential to enhance its capabilities in producing sustainable, flexible, and mass customizable ‘right first-time’ designs. This paper aims to demonstrate the concept methodology for the creation of alternative and inspiring aesthetic structures for robot-based additive manufacturing (RBAM). These technologies can enable the economic creation of previously unachievable structures, which traditionally would not have been commercially economic to manufacture. The integration of these technologies with the computing power of generative design provides the tools for practitioners to create concepts which are well beyond the insight of even the most accomplished traditional design teams. This paper aims to address the problem by introducing generative design methodologies employing the Autodesk Fusion 360 platform. Examination of the alternative methods for its use has the potential to significantly reduce the estimated 80% contribution to environmental impact at the initial design phase. Though predominantly a design methodology, generative design combined with RBAM has the potential to leverage many lean manufacturing and quality assurance benefits, enhancing the efficiency and agility of modern furniture manufacturing. Through a case study examination of a furniture artifact, the results will be compared to a traditionally designed and manufactured product employing the Ecochain Mobius product life cycle analysis (LCA) platform. This will highlight the benefits of both generative design and robot-based additive manufacturing from an environmental impact and manufacturing efficiency standpoint. These step changes in design methodology and environmental assessment have the potential to revolutionise the design to manufacturing workflow, giving momentum to the concept of conceiving a pre-industrial model of manufacturing, with the global demand for a circular economy and bespoke sustainable design at its heart.

Keywords: robot, manufacturing, generative design, sustainability, circular econonmy, product life cycle assessment, furniture

Procedia PDF Downloads 124
313 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis

Authors: Sakshi Piplani, Ajit Kumar

Abstract:

Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.

Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid

Procedia PDF Downloads 227
312 Using Q Methodology to Capture Attitudes about Academic Resilience in an Online Postgraduate Psychology Course

Authors: Eleanor F. Willard

Abstract:

The attrition rate on distance learning courses can be high. This research examines how online students often react when faced with poor results. Using q methodology, it was found that the emotional response level and the type of social support sought by students were key influences on their attitude to failure. As educational and psychological researchers, we are adept at measuring learning and achievement, but examining attitudes towards barriers to learning are not so well researched. The distance learning student has differing needs from onsite learners and, as the attrition rate is notoriously high in the online student population, examining learners’ attitude towards adversity and barriers is important. Self-report measures such as questionnaires are useful in terms of ascertaining levels of constructs such as resilience and academic confidence. Interviewing, too, can gain in depth detail of the opinions of such a population, but only in individuals. The aim of this research was to ascertain what the feelings and attitudes of online students were when faced with a setback. This was achieved using q methodology due to its use of both quantitative and qualitative methodology and its suitability for exploratory research. The emphasis with this methodology is the attitudes, not the individuals. The work was focused upon a population of distance learning students who attended a school on site for one week as part of their studies. They were engaged in a psychology masters conversion course and, as such, were graduate students. The Q sort had 30 items taken from the Academic Resilience Scale (ARS-30). The scale items represent three constructs; perseverance, reflecting (including adaptive help-seeking) and negative affect. These are widely acknowledged as being relevant concepts underpinning psychological resilience. The q sort was conducted with 19 students in total. This is done by participants arranging statement cards regarding how similar to themselves they believe each statement to be. This was done after reading a vignette describing an experience of academic failure. Commonalities and differences between the sorts from all participants are then analyzed in terms of correlations and response patterns. Following data collection, the participants' responses were initially analyzed and the key perspectives (factors) to emerge were labelled ‘persevering individuals’ and ‘emotional networkers’. The differences between the two perspectives centre around the level of emotion felt when faced with barriers and the extent that students enlist the help of others inside and outside of the university. The dominant factor to emerge from the sorts of ‘persevering individuals’ demonstrated that many distance learners are tenacious. However, for other students, the level of emotional and social support is pivotal in helping them complete their studies when facing adversity. This was demonstrated by the ‘emotional networkers’ perspective. This research forms a starting point for further work on engaging and retaining online students at university and can potentially provide insight into how universities can lower attrition rates on distance learning courses.

Keywords: academic resilience, distance learning, online learning, q methodology

Procedia PDF Downloads 110
311 Lessons from Implementation of a Network-Wide Safety Huddle in Behavioral Health

Authors: Deborah Weidner, Melissa Morgera

Abstract:

The model of care delivery in the Behavioral Health Network (BHN) is integrated across all five regions of Hartford Healthcare and thus spans the entirety of the state of Connecticut, with care provided in seven inpatient settings and over 30 ambulatory outpatient locations. While safety has been a core priority of the BHN in alignment with High Reliability practices, safety initiatives have historically been facilitated locally in each region or within each entity, with interventions implemented locally as opposed to throughout the network. To address this, the BHN introduced a network wide Safety Huddle during 2022. Launched in January, the BHN Safety Huddle brought together internal stakeholders, including medical and administrative leaders, along with executive institute leadership, quality, and risk management. By bringing leaders together and introducing a network-wide safety huddle into the way we work, the benefit has been an increase in awareness of safety events occurring in behavioral health areas as well as increased systemization of countermeasures to prevent future events. One significant discussion topic presented in huddles has pertained to environmental design and patient access to potentially dangerous items, addressing some of the most relevant factors resulting in harm to patients in inpatient and emergency settings for behavioral health patients. The safety huddle has improved visibility of potential environmental safety risks through the generation of over 15 safety alerts cascaded throughout the BHN and also spurred a rapid improvement project focused on standardization of patient belonging searches to reduce patient access to potentially dangerous items on inpatient units. Safety events pertaining to potentially dangerous items decreased by 31% as a result of standardized interventions implemented across the network and as a result of increased awareness. A second positive outcome originating from the BHN Safety Huddle was implementation of a recommendation to increase the emergency Narcan®(naloxone) supply on hand in ambulatory settings of the BHN after incidents involving accidental overdose resulted in higher doses of naloxone administration. By increasing the emergency supply of naloxone on hand in all ambulatory and residential settings, colleagues are better prepared to respond in an emergency situation should a patient experience an overdose while on site. Lastly, discussions in safety huddle spurred a new initiative within the BHN to improve responsiveness to assaultive incidents through a consultation service. This consult service, aligned with one of the network’s improvement priorities to reduce harm events related to assaultive incidents, was borne out of discussion in huddle in which it was identified that additional interventions may be needed in providing clinical care to patients who are experiencing multiple and/ or frequent safety events.

Keywords: quality, safety, behavioral health, risk management

Procedia PDF Downloads 69
310 A Reusable Foundation Solution for Onshore Windmills

Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom

Abstract:

Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.

Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils

Procedia PDF Downloads 199
309 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health

Authors: Adam Gushgari

Abstract:

The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.

Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse

Procedia PDF Downloads 83
308 The Gut Microbiome in Cirrhosis and Hepatocellular Carcinoma: Characterization of Disease-Related Microbial Signature and the Possible Impact of Life Style and Nutrition

Authors: Lena Lapidot, Amir Amnon, Rita Nosenko, Veitsman Ella, Cohen-Ezra Oranit, Davidov Yana, Segev Shlomo, Koren Omry, Safran Michal, Ben-Ari Ziv

Abstract:

Introduction: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related mortality worldwide. Liver Cirrhosis is the main predisposing risk factor for the development of HCC. The factor(s) influencing disease progression from Cirrhosis to HCC remain unknown. Gut microbiota has recently emerged as a major player in different liver diseases, however its association with HCC is still a mystery. Moreover, there might be an important association between the gut microbiota, nutrition, life style and the progression of Cirrhosis and HCC. The aim of our study was to characterize the gut microbial signature in association with life style and nutrition of patients with Cirrhosis, HCC-Cirrhosis and healthy controls. Design: Stool samples were collected from 95 individuals (30 patients with HCC, 38 patients with Cirrhosis and 27 age, gender and BMI-matched healthy volunteers). All participants answered lifestyle and Food Frequency Questionnaires. 16S rRNA sequencing of fecal DNA was performed (MiSeq Illumina). Results: There was a significant decrease in alpha diversity in patients with Cirrhosis (qvalue=0.033) and in patients with HCC-Cirrhosis (qvalue=0.032) compared to healthy controls. The microbiota of patients with HCC-cirrhosis compared to patients with Cirrhosis, was characterized by a significant overrepresentation of Clostridium (pvalue=0.024) and CF231 (pvalue=0.010) and lower expression of Alphaproteobacteria (pvalue=0.039) and Verrucomicrobia (pvalue=0.036) in several taxonomic levels: Verrucomicrobiae, Verrucomicrobiales, Verrucomicrobiaceae and the genus Akkermansia (pvalue=0.039). Furthermore, we performed an analysis of predicted metabolic pathways (Kegg level 2) that resulted in a significant decrease in the diversity of metabolic pathways in patients with HCC-Cirrhosis (qvalue=0.015) compared to controls, one of which was amino acid metabolism. Furthermore, investigating the life style and nutrition habits of patients with HCC-Cirrhosis, we found significant correlations between intake of artificial sweeteners and Verrucomicrobia (qvalue=0.12), High sugar intake and Synergistetes (qvalue=0.021) and High BMI and the pathogen Campylobacter (qvalue=0.066). Furthermore, overweight in patients with HCC-Cirrhosis modified bacterial diversity (qvalue=0.023) and composition (qvalue=0.033). Conclusions: To the best of the our knowledge, we present the first report of the gut microbial composition in patients with HCC-Cirrhosis, compared with Cirrhotic patients and healthy controls. We have demonstrated in our study that there are significant differences in the gut microbiome of patients with HCC-cirrhosis compared to Cirrhotic patients and healthy controls. Our findings are even more pronounced because the significantly increased bacteria Clostridium and CF231 in HCC-Cirrhosis weren't influenced by diet and lifestyle, implying this change is due to the development of HCC. Further studies are needed to confirm these findings and assess causality.

Keywords: Cirrhosis, Hepatocellular carcinoma, life style, liver disease, microbiome, nutrition

Procedia PDF Downloads 103
307 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 109
306 Comparison of a Capacitive Sensor Functionalized with Natural or Synthetic Receptors Selective towards Benzo(a)Pyrene

Authors: Natalia V. Beloglazova, Pieterjan Lenain, Martin Hedstrom, Dietmar Knopp, Sarah De Saeger

Abstract:

In recent years polycyclic aromatic hydrocarbons (PAHs), which represent a hazard to humans and entire ecosystem, have been receiving an increased interest due to their mutagenic, carcinogenic and endocrine disrupting properties. They are formed in all incomplete combustion processes of organic matter and, as a consequence, ubiquitous in the environment. Benzo(a)pyrene (BaP) is on the priority list published by the Environmental Agency (US EPA) as the first PAH to be identified as a carcinogen and has often been used as a marker for PAHs contamination in general. It can be found in different types of water samples, therefore, the European Commission set up a limit value of 10 ng L–1 (10 ppt) for BAP in water intended for human consumption. Generally, different chromatographic techniques are used for PAHs determination, but these assays require pre-concentration of analyte, create large amounts of solvent waste, and are relatively time consuming and difficult to perform on-site. An alternative robust, stand-alone, and preferably cheap solution is needed. For example, a sensing unit which can be submerged in a river to monitor and continuously sample BaP. An affinity sensor based on capacitive transduction was developed. Natural antibodies or their synthetic analogues can be used as ligands. Ideally the sensor should operate independently over a longer period of time, e.g. several weeks or months, therefore the use of molecularly imprinted polymers (MIPs) was discussed. MIPs are synthetic antibodies which are selective for a chosen target molecule. Their robustness allows application in environments for which biological recognition elements are unsuitable or denature. They can be reused multiple times, which is essential to meet the stand-alone requirement. BaP is a highly lipophilic compound and does not contain any functional groups in its structure, thus excluding non-covalent imprinting methods based on ionic interactions. Instead, the MIPs syntheses were based on non-covalent hydrophobic and π-π interactions. Different polymerization strategies were compared and the best results were demonstrated by the MIPs produced using electropolymerization. 4-vinylpyridin (VP) and divinylbenzene (DVB) were used as monomer and cross-linker in the polymerization reaction. The selectivity and recovery of the MIP were compared to a non-imprinted polymer (NIP). Electrodes were functionalized with natural receptor (monoclonal anti-BaP antibody) and with MIPs selective towards BaP. Different sets of electrodes were evaluated and their properties such as sensitivity, selectivity and linear range were determined and compared. It was found that both receptor can reach the cut-off level comparable to the established ML, and despite the fact that the antibody showed the better cross-reactivity and affinity, MIPs were more convenient receptor due to their ability to regenerate and stability in river till 7 days.

Keywords: antibody, benzo(a)pyrene, capacitive sensor, MIPs, river water

Procedia PDF Downloads 291
305 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 132
304 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato

Authors: H. Mayton, X. Yan, A. G. Taylor

Abstract:

Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.

Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria

Procedia PDF Downloads 118
303 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 264
302 Semantic Differential Technique as a Kansei Engineering Tool to Enquire Public Space Design Requirements: The Case of Parks in Tehran

Authors: Nasser Koleini Mamaghani, Sara Mostowfi

Abstract:

The complexity of public space design makes it difficult for designers to simultaneously consider all issues for thorough decision-making. Among public spaces, the public space around people’s house is the most prominent space that affects and impacts people’s daily life. Considering recreational public spaces in cities, their main purpose would be to design for experiences that enable a deep feeling of peace and a moment of being away from the hectic daily life. Respecting human emotions and restoring natural environments, although difficult and to some extent out of reach, are key issues for designing such spaces. In this paper we propose to analyse the structure of recreational public spaces and the related emotional impressions. Furthermore, we suggest investigating how these structures influence people’s choice for public spaces by using differential semantics. According to Kansei methodology, in order to evaluate a situation appropriately, the assessment variables must be adapted to the user’s mental scheme. This means that the first step would have to be the identification of a space’s conceptual scheme. In our case study, 32 Kansei words and 4 different locations, each with a different sensual experience, were selected. The 4 locations were all parks in the city of Tehran (Iran), each with a unique structure and artifacts such as a fountain, lighting, sculptures, and music. It should be noted that each of these parks has different combination and structure of environmental and artificial elements like: fountain, lightning, sculpture, music (sound) and so forth. The first one was park No.1, a park with natural environment, the selected space was a fountain with motion light and sculpture. The second park was park No.2, in which there are different styles of park construction: ways from different countries, the selected space was traditional Iranian architecture with a fountain and trees. The third one was park No.3, the park with modern environment and spaces, and included a fountain that moved according to music and lighting. The fourth park was park No.4, the park with combination of four elements: water, fire, earth, wind, the selected space was fountains squirting water from the ground up. 80 participant (55 males and 25 females) aged from 20-60 years participated in this experiment. Each person filled the questionnaire in the park he/she was in. Five-point semantic differential scale was considered to determine the relation between space details and adjectives (kansei words). Received data were analyzed by multivariate statistical technique (factor analysis using SPSS statics). Finally the results of this analysis are criteria as inspiration which can be used in future space designing for creating pleasant feeling in users.

Keywords: environmental design, differential semantics, Kansei engineering, subjective preferences, space

Procedia PDF Downloads 389
301 Toxicity Evaluation of Reduced Graphene Oxide on First Larval Stages of Artemia sp.

Authors: Roberta Pecoraro

Abstract:

The focus of this work was to investigate the potential toxic effect of titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites on nauplii of microcrustacean Artemia sp. In order to assess the nanocomposite’s toxicity, a short-term test was performed by exposing nauplii to solutions containing TiO₂-rGO. To prepare titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites, a green procedure based on solar photoreduction was proposed; it allows to obtain the photocatalysts by exploiting the photocatalytic properties of titania activated by the solar irradiation in order to avoid the high temperatures and pressures required for the standard hydrothermal synthesis. Powders of TiO₂-rGO supplied by the Department of Chemical Sciences (University of Catania) are indicated as TiO₂-rGO at 1% and TiO₂-rGO at 2%. Starting from a stock solution (1mg rGO-TiO₂/10 ml ASPM water) of each type, we tested four different concentrations (serial dilutions ranging from 10⁻¹ to 10⁻⁴ mg/ml). All the solutions have been sonicated for 12 min prior to use. Artificial seawater (called ASPM water) was prepared to guarantee the hatching of the cysts and to maintain nauplii; the durable cysts used in this study, marketed by JBL (JBL GmbH & Co. KG, Germany), were hydrated with ASPM water to obtain nauplii (instar II-III larvae). The hatching of the cysts was carried out in the laboratory by immersing them in ASPM water inside a 500 ml beaker and keeping them constantly oxygenated thanks to an aerator for the insufflation of microbubble air: after 24-48 hours, the cysts hatched, and the nauplii appeared. The nauplii in the second and third stages of development were collected one-to-one, using stereomicroscopes, and transferred into 96-well microplates where one nauplius per well was added. The wells quickly have been filled with 300 µl of each specific concentration of the solution used, and control samples were incubated only with ASPM water. Replication was performed for each concentration. Finally, the microplates were placed on an orbital shaker, and the tests were read after 24 and 48 hours from inoculating the solutions to assess the endpoint (immobility/death) for the larvae. Nauplii that appeared motionless were counted as dead, and the percentages of mortality were calculated for each treatment. The results showed a low percentage of immobilization both for TiO₂-rGO at 1% and TiO₂-rGO at 2% for all concentrations tested: for TiO₂-rGO at 1% was below 12% after 24h and below 15% after 48h; for TiO₂-rGO at 2% was below 8% after 24h and below 12% after 48h. According to other studies in the literature, the results have not shown mortality nor toxic effects on the development of larvae after exposure to rGO. Finally, it is important to highlight that the TiO₂-rGO catalysts were tested in the solar photodegradation of a toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining a high percentage of degradation; therefore, this alternative approach could be considered a good strategy to obtain performing photocatalysts.

Keywords: Nauplii, photocatalytic properties, reduced GO, short-term toxicity test, titanium dioxide

Procedia PDF Downloads 167
300 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 113
299 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 241
298 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil

Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha

Abstract:

Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.

Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management

Procedia PDF Downloads 293
297 Evaluating the Business Improvement District Redevelopment Model: An Ethnography of a Tokyo Shopping Mall

Authors: Stefan Fuchs

Abstract:

Against the backdrop of the proliferation of shopping malls in Japan during the last two decades, this paper presents the results of an ethnography conducted at a recently built suburban shopping mall in Western Tokyo. Through the analysis of the lived experiences of local residents, mall customers and the mall management this paper evaluates the benefits and disadvantages of the Business Improvement District (BID) model, which was implemented as urban redevelopment strategy in the area surrounding the shopping mall. The results of this research project show that while the BID model has in some respects contributed to the economic prosperity and to the perceived convenience of the area, it has led to gentrification and the redevelopment shows some deficiencies with regard to the inclusion of the elderly population as well as to the democratization of the decision-making process within the area. In Japan, shopping malls have been steadily growing both in size and number since a series of deregulation policies was introduced in the year 2000 in an attempt to push the domestic economy and to rejuvenate urban landscapes. Shopping malls have thereby become defining spaces of the built environment and are arguably important places of social interaction. Notwithstanding the vital role they play as factors of urban transformation, they have been somewhat overlooked in the research on Japan; especially with respect to their meaning for people’s everyday lives. By examining the ways, people make use of space in a shopping mall the research project presented in this paper addresses this gap in the research. Moreover, the research site of this research project is one of the few BIDs of Japan and the results presented in this paper can give indication on the scope of the future applicability of this urban redevelopment model. The data presented in this research was collected during a nine-months ethnographic fieldwork in and around the shopping mall. This ethnography includes semi-structured interviews with ten key informants as well as direct and participant observations examining the lived experiences and perceptions of people living, shopping or working at the shopping mall. The analysis of the collected data focused on recurring themes aiming at ultimately capturing different perspectives on the same aspects. In this manner, the research project documents the social agency of different groups within one communal network. The analysis of the perceptions towards the urban redevelopment around the shopping mall has shown that mainly the mall customers and large businesses benefit from the BID redevelopment model. While local residents benefit to some extent from their neighbourhood becoming more convenient for shopping they perceive themselves as being disadvantaged by changing demographics due to rising living expenses, the general noise level and the prioritisation of a certain customer segment or age group at the shopping mall. Although the shopping mall examined in this research project is just an example, the findings suggest that in future urban redevelopment politics have to provide incentives for landowners and developing companies to think of other ways of transforming underdeveloped areas.

Keywords: business improvement district, ethnography, shopping mall, urban redevelopment

Procedia PDF Downloads 119
296 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 315
295 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 50
294 Data Calibration of the Actual versus the Theoretical Micro Electro Mechanical Systems (MEMS) Based Accelerometer Reading through Remote Monitoring of Padre Jacinto Zamora Flyover

Authors: John Mark Payawal, Francis Aldrine Uy, John Paul Carreon

Abstract:

This paper shows the application of Structural Health Monitoring, SHM into bridges. Bridges are structures built to provide passage over a physical obstruction such as rivers, chasms or roads. The Philippines has a total of 8,166 national bridges as published on the 2015 atlas of the Department of Public Works and Highways (DPWH) and only 2,924 or 35.81% of these bridges are in good condition. As a result, PHP 30.464 billion of the 2016 budget of DPWH is allocated on roads and/or bridges maintenance alone. Intensive spending is owed to the present practice of outdated manual inspection and assessment, and poor structural health monitoring of Philippine infrastructures. As the School of Civil, Environmental, & Geological Engineering of Mapua Institute of Technology (MIT) continuous its well driven passion in research based projects, a partnership with the Department of Science and Technology (DOST) and the DPWH launched the application of Structural Health Monitoring, (SHM) in Padre Jacinto Zamora Flyover. The flyover is located along Nagtahan Boulevard in Sta. Mesa, Manila that connects Brgy. 411 and Brgy. 635. It gives service to vehicles going from Lacson Avenue to Mabini Bridge passing over Legarda Flyover. The flyover is chosen among the many located bridges in Metro Manila as the focus of the pilot testing due to its site accessibility, and complete structural built plans and specifications necessary for SHM as provided by the Bureau of Design, BOD department of DPWH. This paper focuses on providing a method to calibrate theoretical readings from STAAD Vi8 Pro and sync the data to actual MEMS accelerometer readings. It is observed that while the design standards used in constructing the flyover was reflected on the model, actual readings of MEMS accelerometer display a large difference compared to the theoretical data ran and taken from STAAD Vi8 Pro. In achieving a true seismic response of the modeled bridge or hence syncing the theoretical data to the actual sensor reading also called as the independent variable of this paper, analysis using single degree of freedom (SDOF) of the flyover under free vibration without damping using STAAD Vi8 Pro is done. The earthquake excitation and bridge responses are subjected to earthquake ground motion in the form of ground acceleration or Peak Ground Acceleration, PGA. Translational acceleration load is used to simulate the ground motion of the time history analysis acceleration record in STAAD Vi8 Pro.

Keywords: accelerometer, analysis using single degree of freedom, micro electro mechanical system, peak ground acceleration, structural health monitoring

Procedia PDF Downloads 299
293 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 175
292 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 149
291 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 396
290 Sustainable Living Where the Immaterial Matters

Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou

Abstract:

This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?

Keywords: blurring zones, porous borders, spaces of flow, urban recipe

Procedia PDF Downloads 403
289 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 35
288 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 103
287 Stability of a Natural Weak Rock Slope under Rapid Water Drawdowns: Interaction between Guadalfeo Viaduct and Rules Reservoir, Granada, Spain

Authors: Sonia Bautista Carrascosa, Carlos Renedo Sanchez

Abstract:

The effect of a rapid drawdown is a classical scenario to be considered in slope stability under submerged conditions. This situation arises when totally or partially submerged slopes experience a descent of the external water level and is a typical verification to be done in a dam engineering discipline, as reservoir water levels commonly fluctuate noticeably during seasons and due to operational reasons. Although the scenario is well known and predictable in general, site conditions can increase the complexity of its assessment and external factors are not always expected, can cause a reduction in the stability or even a failure in a slope under a rapid drawdown situation. The present paper describes and discusses the interaction between two different infrastructures, a dam and a highway, and the impact on the stability of a natural rock slope overlaid by the north abutment of a viaduct of the A-44 Highway due to the rapid drawdown of the Rules Dam, in the province of Granada (south of Spain). In the year 2011, with both infrastructures, the A-44 Highway and the Rules Dam already constructed, delivered and under operation, some movements start to be recorded in the approximation embankment and north abutment of the Guadalfeo Viaduct, included in the highway and developed to solve the crossing above the tail of the reservoir. The embankment and abutment were founded in a low-angle natural rock slope formed by grey graphic phyllites, distinctly weathered and intensely fractured, with pre-existing fault and weak planes. After the first filling of the reservoir, to a relative level of 243m, three consecutive drawdowns were recorded in the autumns 2010, 2011 and 2012, to relative levels of 234m, 232m and 225m. To understand the effect of these drawdowns in the weak rock mass strength and in its stability, a new geological model was developed, after reviewing all the available ground investigations, updating the geological mapping of the area and supplemented with an additional geotechnical and geophysical investigations survey. Together with all this information, rainfall and reservoir level evolution data have been reviewed in detail to incorporate into the monitoring interpretation. The analysis of the monitoring data and the new geological and geotechnical interpretation, supported by the use of limit equilibrium software Slide2, concludes that the movement follows the same direction as the schistosity of the phyllitic rock mass, coincident as well with the direction of the natural slope, indicating a deep-seated movement of the whole slope towards the reservoir. As part of these conclusions, the solutions considered to reinstate the highway infrastructure to the required FoS will be described, and the geomechanical characterization of these weak rocks discussed, together with the influence of water level variations, not only in the water pressure regime but in its geotechnical behavior, by the modification of the strength parameters and deformability.

Keywords: monitoring, rock slope stability, water drawdown, weak rock

Procedia PDF Downloads 149
286 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 178