Search results for: carbon fiber reinforced polymer (CFRP)
2041 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange
Authors: Abdul Qader Melhem, Hacene Badache
Abstract:
This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors
Procedia PDF Downloads 2272040 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions
Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek
Abstract:
The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration
Procedia PDF Downloads 1352039 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents
Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub
Abstract:
In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model
Procedia PDF Downloads 2242038 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process
Authors: Kamalesh Kumar Singh
Abstract:
Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery
Procedia PDF Downloads 562037 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 4582036 The Study on Mechanical Properties of Graphene Using Molecular Mechanics
Authors: I-Ling Chang, Jer-An Chen
Abstract:
The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.Keywords: energy minimization, fracture, graphene, molecular mechanics
Procedia PDF Downloads 4022035 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids
Authors: Muhammad Mazhar, Yong Zhu, Likang Qin
Abstract:
Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes
Procedia PDF Downloads 732034 Assessing the Role of Failed-ADR in Civil Litigation
Authors: Masood Ahmed
Abstract:
There is a plethora of literature (including judicial and extra-judicial comments) concerning the virtues of alternative dispute resolution processes within the English civil justice system. Lord Woolf in his Access to Justice Report ushered in a new pro-ADR philosophy and this was reinforced by Sir Rupert Jackson in his review of civil litigation costs. More recently, Briggs LJ, in his review of the Chancery Court, reiterated the significant role played by ADR and the need for better integration of ADR processes within the Chancery Court. His Lordship also noted that ADR which had failed to produce a settlement (i.e. a failed-ADR) continued to play a significant role in contributing to a ‘substantial narrowing of the issues or increased focus on the key issues’ which were ‘capable of assisting both the parties and the court in the economical determination of the dispute at trial.’ With the assistance of empirical data, this paper investigates the nature of failed-ADR and, in particular, assesses the effectiveness of failed-ADR processes as a tool in: (a) narrowing the legal and/or factual issues which may assist the courts in more effective and efficient case management of the dispute; (b) assisting the parties in the future settlement of the matter. This paper will also measure the effectiveness of failed-ADR by considering the views and experiences of legal practitioners who have engaged in failed-ADR.Keywords: English civil justice system, alternative dispute resolution processes, civil court process, empirical data from legal profession regarding failed ADR
Procedia PDF Downloads 4652033 Antioxidant Potential, Nutritional Value and Sensory Profiles of Bread Fortified with Kenaf Leaves
Authors: Kar Lin Nyam, Phey Yee Lim
Abstract:
The aim of this study was to determine the antioxidant potential, nutritional composition, and functional properties of kenaf leaves powder. Besides, the effect of kenaf leaves powder in bread qualities, properties, and consumer acceptability were evaluated. Different formulations of bread fortified with 0%, 4% and 8% kenaf leaves powder, respectively were produced. Physical properties of bread, such as loaf volume, dough expansion, crumb colour, and bread texture, were determined. Nine points hedonic scale was utilized in sensory evaluation to determine the best formulation (the highest overall acceptability). Proximate composition, calcium content, and antioxidant properties were also determined for the best formulation. 4% leaves powder bread was the most preferred by the panelists followed by control bread, and the least preferred was being 8% leaves powder bread. 4% leaves powder bread had significantly higher value of DPPH radical scavenging capacity (8.05 mg TE/100g), total phenolic content (12.88 mg GAE/100g) and total flavonoid content (13.26 mg QE/100g) compared to control bread (1.38 mg TE/100g, 8.17 mg GAE/100g, and 8.77 mg QE/100g respectively). Besides, 4% leaves powder bread also showed higher in calcium content and total dietary fiber compared to control bread. Kenaf leaves powder is suitable to be used as a source of natural antioxidant for fortification and nutrient improver in bread.Keywords: dietary fibre, calcium, total phenolic content, total flavonoid content
Procedia PDF Downloads 1272032 Reusing of HSS Hacksaw Blades as Rough Machining Tool
Authors: Raja V., Chokkalingam B.
Abstract:
For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.Keywords: hardness, high speed steels, power hacksaw blade, tensile strength
Procedia PDF Downloads 4572031 A Review on Various Approaches for Energy Conservation in Green Cloud Computing
Authors: Sumati Manchanda
Abstract:
Cloud computing is one of the most recent developing engineering and is consistently utilized as a part of different IT firms so as to make benefits like expense sparing or financial minimization, it must be eco cordial also. In this manner, Green Cloud Computing is the need of the today's current situation. It is an innovation that is rising as data correspondence engineering. This paper surveys the unequivocal endeavors made by different specialists to make Cloud Computing more vitality preserving, to break down its vitality utilization focused around sorts of administrations gave furthermore to diminish the carbon foot shaped impression rate by colossal methodologies furthermore edify virtualization idea alongside different diverse methodologies which utilize virtual machines scheduling and migration. The summary of the proposed work by various authors that we have reviewed is also presented in the paper.Keywords: cloud computing, green cloud computing, scheduling, migration, virtualization, energy efficiency
Procedia PDF Downloads 3942030 Treatment of Oil Recovery Water Using Direct and Indirect Electrochemical Oxidation
Authors: Tareg Omar Mansour, Khaled Omar Elhaji
Abstract:
Model solutions of pentanol in the salt water of various concentrations were subjected to electrochemical oxidation using a dimensionally stable anode (DSA) and a platinised titanium cathode. The removal of pentanol was analysed over time using gas chromatography (GC) and by monitoring the total organic carbon (TOC) concentration of the reaction mixture. It was found that the removal of pentanol occurred more efficiently at higher salinities and higher applied electrical current values. When using a salt concentration of 20,000 ppm and an applied current of 100 mA there was a decrease in concentration of pentanol of 15 %. When the salt concentration and applied current were increased to 58,000 ppm and 500 mA respectively, the decrease in concentration was improved to 64 %.Keywords: dimensionally stable anode (DSA), total organic hydrocarbon (TOC), gas chromatography mass spectrometry (GCMS), electrochemical oxidation
Procedia PDF Downloads 3842029 Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide
Authors: D. Majumdar, M. Baskey, S. K. Saha
Abstract:
Graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. In the present work, we have described a simple and general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 Volt. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [~2.48 Å] of graphene and {120} planes of PANI.Keywords: epitaxial growth, PANI, reduced graphene oxide, rectification ratio
Procedia PDF Downloads 2892028 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface
Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad
Abstract:
The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface
Procedia PDF Downloads 652027 Plantation Forests Height Mapping Using Unmanned Aerial System
Authors: Shiming Li, Qingwang Liu, Honggan Wu, Jianbing Zhang
Abstract:
Plantation forests are useful for timber production, recreation, environmental protection and social development. Stands height is an important parameter for the estimation of forest volume and carbon stocks. Although lidar is suitable technology for the vertical parameters extraction of forests, but high costs make it not suitable for operational inventory. With the development of computer vision and photogrammetry, aerial photos from unmanned aerial system can be used as an alternative solution for height mapping. Structure-from-motion (SfM) photogrammetry technique can be used to extract DSM and DEM information. Canopy height model (CHM) can be achieved by subtraction DEM from DSM. Our result shows that overlapping aerial photos is a potential solution for plantation forests height mapping.Keywords: forest height mapping, plantation forests, structure-from-motion photogrammetry, UAS
Procedia PDF Downloads 2782026 Using of TFC Polysulfone Electrospun Nanofiber Mats in Oil-Water Separation
Authors: Nasser A. M. Barakat
Abstract:
Membrane technology is the most promising process for oil-water separation operation if the hydrophilicity, fouling and reusability properties could be improved. In this study, novel effective and reusable membrane for oil-water separation process is introduced based on modification of polysulfone (PSF) electrospun nanofiber mats. The modification process was achieved by incorporation of NaOH nanoparticles inside the PSF nanofibers, and formation of a thin layer from a polyamide polymer on the surface of the electrospun mat. Typically, solutions composed of PSF and NaOH (twelve solutions were prepared based on different PSF concentrations; 15, 18 and 20 wt%, and various NaOH content; 1.5, 1.7 and 2.5 wt%) have been electrospun, then the dried nanofiber mats were treated by m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride to form polyamide thin layer on the surface of the mats. The results indicated that incorporation of NaOH and the formed polyamide could decrease the water contact angle from ~ 130˚ to 13˚ for the nanofiber mats obtained from 20 wt% PSF solutions containing 1.7 wt% sodium hydroxide powders. Interestingly, the membrane having the lowest contact angle could separate oil-water mixture for three successive cycles and 100% removal of the oil with relatively high water flux; 5.5 m3/m2.day. Overall, simplicity of the manufacturing technique, and effectiveness and reusability of the produced nanofiber mats open new avenue for the introduced as promising membranes for the oil-water separation process.Keywords: electrospinning, oil-water separation, hydrophilic membrane, nanofibers
Procedia PDF Downloads 3412025 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.Keywords: CNT, efficiency, electric, microorganisms, sediment
Procedia PDF Downloads 4092024 Sustainability Index for REDD-Plus Implementation in Central Kalimantan, Indonesia
Authors: Febrina Natalia, Noriyuki Tanaka, Mitsuru Osaki
Abstract:
Sustainability Index for REDD-plus implementation was constructed to evaluate the sustainability of different communities in 5 villages (Taruna Jaya, Tumbang Nusa, Marang, Terantang, and Seragam Jaya) in Central Kalimantan, Indonesia based on the main objectives of REDD-plus project (reducing emission from deforestation and forest degradation, increasing carbon stock, preserving biodiversity and sustaining forest management). This index was separately composed of 3 different components; (1) ecology, (2) economy, and (3) society. The index of sustainability was determined into four categories; 3,3-4,0 (excellent), 2,5-3,2 (good), 1,8-2,4 (fair), and 1,0-1,7 (poor). Overall, this technique aims to assist all stakeholders and local government in particular in providing information of villages’ sustainability index before implementing REDD-plus project that the assistance and benefits given to villages will be beneficial, effective and efficient.Keywords: central kalimantan, Indonesia, REDD-plus, sustainability index
Procedia PDF Downloads 4402023 Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe
Authors: M. Kustyawati, F. Pratama, D. Saputra, A. Wijaya
Abstract:
Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe.Keywords: tempe, sub supercritical CO2, fungistatic effect, preservation
Procedia PDF Downloads 2692022 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment
Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas
Abstract:
Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation
Procedia PDF Downloads 1462021 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants
Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo
Abstract:
Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles
Procedia PDF Downloads 1132020 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures
Authors: Gautam, Arjun, V. R. Sharma
Abstract:
In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures
Procedia PDF Downloads 3842019 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia
Authors: Tejeet Singh, Virat Khanna
Abstract:
Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.Keywords: composite, creep, rotating cylinder, angular speed
Procedia PDF Downloads 4452018 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City
Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş
Abstract:
Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.Keywords: greenhousing, solar energy, direct radiation, renewable energy
Procedia PDF Downloads 4792017 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry
Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister
Abstract:
The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming
Procedia PDF Downloads 2112016 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation
Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager
Abstract:
The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization
Procedia PDF Downloads 1002015 Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils
Authors: Aarti Singh, Anees Ahmad
Abstract:
Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods.Keywords: cymbopogon martini, essential oil, FT-IR, GC-MS, HPTLC, SC-CO2
Procedia PDF Downloads 4622014 Maximaxing the Usage of Solar Energy in an Area of Low Peak Sunlight Hours
Authors: Ohabuiro John Uwabunkeonye
Abstract:
Source of green energy is becoming a concern in developing countries where most energy source in use emits high level of carbon (IV) oxide which contributes to global warming. More so, even with the generation of energy from fossil fuel, the electricity supply is still very inadequate. Therefore, this paper examines different ways of designing and installing photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage in an area of very low peak sunlight hours (PSH) and inadequate supply of electricity from utility companies. Different sample of Peak sunlight hour for selected areas in Nigeria are considered and the lowest of it all is taken. Some means of ensuring that the available solar energy is harnessed properly and converted into electrical energy are discussed for usage in such areas as mentioned above.Keywords: green energy, fossil fuel, peak sunlight hour, photovoltaic
Procedia PDF Downloads 6422013 The Gasification of Fructose in Supercritical Water
Authors: Shyh-Ming Chern, H. Y. Cheng
Abstract:
Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.Keywords: biomass, fructose, gasification, supercritical water
Procedia PDF Downloads 3532012 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2
Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel
Abstract:
Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2
Procedia PDF Downloads 356