Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4671

Search results for: tomato yield prediction

711 Best Practices in Designing a Mentoring Programme for Soft Skills Development

Authors: D. Kokt, T. F. Dreyer

Abstract:

The main objective of the study was to design a mentoring programme aimed at developing the soft skills of mentors. The mentors are all employed by a multinational corporation. The company had a mentoring plan in place that did not yield the required results, especially related to the development of soft skills. This prompted the researchers to conduct an extensive literature review followed by a mixed methods approach to ascertain the best practices in developing the soft skills of mentors. The outcomes of the study led to the development of a structured mentoring programme using 25 modules to be completed by mentors. The design incorporated a blended modular approach using both face-to-face teaching and teaching supported by Information Communication Technology (ICT). Blended learning was ideal as the ICT component helped to minimise instructor-mentor physical contact as part of the health measures during the Covid-19 pandemic. The blended learning approach also allowed instructors and mentors an online or offline mode, so that mentors could have more time for creative and cooperative exercises. A range of delivery methodologies were spread out across the different modules to ensure mentor engagement and accelerate mentor development. This included concept development through in-person instructor-led training sessions, concept development through virtual instructor-led training sessions, simulations, case studies, e-learning, role plays, interactive learning using mentoring toolkits, and experiential learning through application. The mentor development journey included formal modular competency assessments. All modules contained post-competency assessment consisting of 10 questions (comprising of a combination of explanatory questions and multiple-choice questions) to ensure understanding and deal with identified competency gaps. The minimum pass mark for all modular competency assessments was 80%. Mentors were allowed to retake the assessment if they scored less than 80% until they demonstrated understanding at the required level.

Keywords: mentor, mentee, soft skills, mentor development, blended learning, modular approach

Procedia PDF Downloads 26
710 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 292
709 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 171
708 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 192
707 Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau

Authors: Na Zhou, Chun-Lai Zhang, Qing Li, Bingqi Zhu, Xun-Ming Wang

Abstract:

The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV.

Keywords: grain size distribution, geochemistry, wind and water load, sand source, Yarlung Zangbo River Valley

Procedia PDF Downloads 94
706 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 166
705 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan

Abstract:

Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.

Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation

Procedia PDF Downloads 133
704 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 88
703 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 155
702 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 136
701 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 140
700 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 75
699 Design and Developing the Infrared Sensor for Detection and Measuring Mass Flow Rate in Seed Drills

Authors: Bahram Besharti, Hossein Navid, Hadi Karimi, Hossein Behfar, Iraj Eskandari

Abstract:

Multiple or miss sowing by seed drills is a common problem on the farm. This problem causes overuse of seeds, wasting energy, rising crop treatment cost and reducing crop yield in harvesting. To be informed of mentioned faults and monitoring the performance of seed drills during sowing, developing a seed sensor for detecting seed mass flow rate and monitoring in a delivery tube is essential. In this research, an infrared seed sensor was developed to estimate seed mass flow rate in seed drills. The developed sensor comprised of a pair of spaced apart circuits one acting as an IR transmitter and the other acting as an IR receiver. Optical coverage in the sensing section was obtained by setting IR LEDs and photo-diodes directly on opposite sides. Passing seeds made interruption in radiation beams to the photo-diode which caused output voltages to change. The voltage difference of sensing units summed by a microcontroller and were converted to an analog value by DAC chip. The sensor was tested by using a roller seed metering device with three types of seeds consist of chickpea, wheat, and alfalfa (representing large, medium and fine seed, respectively). The results revealed a good fitting between voltage received from seed sensor and mass flow of seeds in the delivery tube. A linear trend line was set for three seeds collected data as a model of the mass flow of seeds. A final mass flow model was developed for various size seeds based on receiving voltages from the seed sensor, thousand seed weight and equivalent diameter of seeds. The developed infrared seed sensor, besides monitoring mass flow of seeds in field operations, can be used for the assessment of mechanical planter seed metering unit performance in the laboratory and provide an easy calibrating method for seed drills before planting in the field.

Keywords: seed flow, infrared, seed sensor, seed drills

Procedia PDF Downloads 363
698 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 477
697 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 132
696 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 90
695 Role of Onion Extract for Neuro-Protection in Experimental Stroke Model

Authors: Richa Shri, Varinder Singh, Kundan Singh Bora, Abhishek Bhanot, Rahul Kumar, Amit Kumar, Ravinder Kaur

Abstract:

The term ‘neuroprotection’ means preserving/salvaging function and structure of neurons. Neuroprotection is an adjunctive treatment option for neurodegenerative disorders. Oxidative stress is considered a major culprit in neurodegenerative disorders; hence, management strategies include use of antioxidants. Our search for a neuroprotective agent began with Allium cepa L. or onions, (family Amaryllidaceae) - a potent antioxidant. We have investigated the neuroprotective potential of onions in experimental models of ischemic stroke, diabetic neuropathy, neuropathic pain, and dementia. In pre and post-ischemic stroke model, the methanol extract of outer scales of onion bulbs (MEOS) prevented memory loss and motor in-coordination; reduced oxidative stress and cerebral infarct size. This also prevented and ameliorated diabetic neuropathy in mice. The MEOS was fractionated to yield a flavonoid rich fraction (FRF) that successfully reversed ischemia-reperfusion induced neuronal damage, thereby demonstrating that the flavonoids are responsible for the activity. The FRF effectively ameliorated chronic constriction induced neuropathic pain in rats. The FRF was subjected to bioactivity-guided fractionated. It was seen that FRF is more effective as compared to the isolated components probably due to synergism among the constituents (i.e., quercetin and quercetin glucosides) in the FRF. The outer scales of onion bulbs have great potential for prevention as well as for treatment of neuronal disorders. Red onions, with higher amounts of flavonoids as compared to the white onions, produced more significant neuroprotection. Thus, the standardized FRF from the waste material of a commonly used vegetable, especially the red variety, may be developed as a valuable neuroprotective agent.

Keywords: Allium cepa, antioxidant activity, flavonoid rich fraction, neuroprotection

Procedia PDF Downloads 148
694 Being Young in Times of Change: Transformative Aspects of Migration across Generations in South Wollo, Ethiopia

Authors: Adamnesh A. Bogale, Dorte Thorsen

Abstract:

This paper aims to learn how children/siblings left behind due to parental migration experience care and the effects of the separation. It also aims to unpack the experiences of youth migrants in rural Ethiopia. It focuses specifically on how children and youth are affected in order to highlight in which areas intervention can enhance or inadvertently undermine the development impact of migration on young people. Based on a qualitative study in South Wollo, Ethiopia, which was undertaken in three stages in 2017-19 and involved 34 households and a number of key informants, the analysis offers insights into how migration contributes to household sustainability and, in the process, alters intergenerational relationships and dynamics. Contemporary migration in Ethiopia is complex and highly gendered. For young women, the migration corridor from Ethiopia to the Middle East is the most important, whereas young men mostly engage in local migration or travel to South Africa or Sudan. Arguing that children and youths’ experience of migration must be understood in the context of the moral, affective, and material economies, the paper distinguishes between young people’s experiences of migration as children of migrants, as siblings of a migrant, and as migrants. The material shows that children and youths demonstrate different experiences in parental migration depending on age, care arrangement, and the ability to communicate with an absent mother. Migration has a different implication for younger siblings depending on their gender. The division of work and future responsibilities post marriage combine to disadvantage female siblings while male siblings are either unaffected or reaped the benefits of investments made with remittances. Finally, migration is a mechanism to change generational power relationships. As remitters, young migrants yield better recognition in the family, though not always to the degree that they can control the use of remittances. The power to make decisions is not tied only to material resources and the household; migration facilitates social change that opens space for young women to have more influence over their own lives.

Keywords: migration, youth, Ethiopia, generations

Procedia PDF Downloads 31
693 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr

Abstract:

Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.

Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 74
692 Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus

Authors: Yugander Arra, Florence Auguy, Melissa Stiebner, Sophie Chéron, Michael M. Wudick, Van Schepler-Luu, Sébastien Cunnac, Wolf B. Frommer, Laurence Albar

Abstract:

Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV.

Keywords: CRISPR Cas9, genome editing, knock out mutant, recessive resistance, rice yellow mottle virus

Procedia PDF Downloads 112
691 Importance of Prostate Volume, Prostate Specific Antigen Density and Free/Total Prostate Specific Antigen Ratio for Prediction of Prostate Cancer

Authors: Aliseydi Bozkurt

Abstract:

Objectives: Benign prostatic hyperplasia (BPH) is the most common benign disease, and prostate cancer (PC) is malign disease of the prostate gland. Transrectal ultrasound-guided biopsy (TRUS-bx) is one of the most important diagnostic tools in PC diagnosis. Identifying men at increased risk for having a biopsy detectable prostate cancer should consider prostate specific antigen density (PSAD), f/t PSA Ratio, an estimate of prostate volume. Method: We retrospectively studied 269 patients who had a prostate specific antigen (PSA) score of 4 or who had suspected rectal examination at any PSA level and received TRUS-bx between January 2015 and June 2018 in our clinic. TRUS-bx was received by 12 experienced urologists with 12 quadrants. Prostate volume was calculated prior to biopsy together with TRUS. Patients were classified as malignant and benign at the end of pathology. Age, PSA value, prostate volume in transrectal ultrasonography, corpuscle biopsy, biopsy pathology result, the number of cancer core and Gleason score were evaluated in the study. The success rates of PV, PSAD, and f/tPSA were compared in all patients and those with PSA 2.5-10 ng/mL and 10.1-30 ng/mL tp foresee prostate cancer. Result: In the present study, in patients with PSA 2.5-10 ng/ml, PV cut-off value was 43,5 mL (n=42 < 43,5 mL and n=102 > 43,5 mL) while in those with PSA 10.1-30 ng/mL prostate volüme (PV) cut-off value was found 61,5 mL (n=31 < 61,5 mL and n=36 > 61,5 mL). Total PSA values in the group with PSA 2.5-10 ng/ml were found lower (6.0 ± 1.3 vs 6.7 ± 1.7) than that with PV < 43,5 mL, this value was nearly significant (p=0,043). In the group with PSA value 10.1-30 ng/mL, no significant difference was found (p=0,117) in terms of total PSA values between the group with PV < 61,5 mL and that with PV > 61,5 mL. In the group with PSA 2.5-10 ng/ml, in patients with PV < 43,5 mL, f/t PSA value was found significantly lower compared to the group with PV > 43,5 mL (0.21 ± 0.09 vs 0.26 ± 0.09 p < 0.001 ). Similarly, in the group with PSA value of 10.1-30 ng/mL, f/t PSA value was found significantly lower in patients with PV < 61,5 mL (0.16 ± 0.08 vs 0.23 ± 0.10 p=0,003). In the group with PSA 2.5-10 ng/ml, PSAD value in patients with PV < 43,5 mL was found significantly higher compared to those with PV > 43,5 mL (0.17 ± 0.06 vs 0.10 ± 0.03 p < 0.001). Similarly, in the group with PSA value 10.1-30 ng/mL PSAD value was found significantly higher in patients with PV < 61,5 mL (0.47 ± 0.23 vs 0.17 ± 0.08 p < 0.001 ). The biopsy results suggest that in the group with PSA 2.5-10 ng/ml, in 29 of the patients with PV < 43,5 mL (69%) cancer was detected while in 13 patients (31%) no cancer was detected. While in 19 patients with PV > 43,5 mL (18,6%) cancer was found, in 83 patients (81,4%) no cancer was detected (p < 0.001). In the group with PSA value 10.1-30 ng/mL, in 21 patients with PV < 61,5 mL (67.7%) cancer was observed while only in10 patients (32.3%) no cancer was seen. In 5 patients with PV > 61,5 mL (13.9%) cancer was found while in 31 patients (86.1%) no cancer was observed (p < 0.001). Conclusions: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider PSA, f/t PSA Ratio, an estimate of prostate volume. Prostate volume in PC was found lower.

Keywords: prostate cancer, prostate volume, prostate specific antigen, free/total PSA ratio

Procedia PDF Downloads 146
690 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri

Authors: Shishay Kidanu, Abdullah Alhaj

Abstract:

Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.

Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri

Procedia PDF Downloads 70
689 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process

Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams

Abstract:

In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.

Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy

Procedia PDF Downloads 125
688 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.

Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy

Procedia PDF Downloads 285
687 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy

Authors: Jemal Ebrahim Dessie, Lukács Zsolt

Abstract:

High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.

Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper

Procedia PDF Downloads 96
686 Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments

Authors: Md Azizul Islam

Abstract:

Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams.

Keywords: seam, seam efficiency, serviceability, T-shirt

Procedia PDF Downloads 199
685 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 193
684 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 15
683 Prediction of Ionic Liquid Densities Using a Corresponding State Correlation

Authors: Khashayar Nasrifar

Abstract:

Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed.

Keywords: correlation, corresponding state principle, ionic liquid, density

Procedia PDF Downloads 125
682 A Study on Conventional and Improved Tillage Practices for Sowing Paddy in Wheat Harvested Field

Authors: R. N. Pateriya, T. K. Bhattacharya

Abstract:

In India, rice-wheat cropping system occupies the major area and contributes about 40% of the country’s total food grain production. It is necessary that production of rice and wheat must keep pace with growing population. However, various factors such as degradation in natural resources, shift in cropping pattern, energy constraints etc. are causing reduction in the productivity of these crops. Seedbed for rice after wheat is difficult to prepare due to presence of straw and stubbles, and require excessive tillage operations to bring optimum tilth. In addition, delayed sowing and transplanting of rice is mainly due to poor crop residue management, multiplicity of tillage operations and non-availability of the power source. With increasing concern for fuel conservation and energy management, farmers might wish to estimate the best cultivation system for more productivity. The widest spread method of tilling land is ploughing with mould board plough. However, with the mould board plough upper layer of soil is neither always loosened at the desired extent nor proper mixing of different layers are achieved. Therefore, additional operations carried out to improve tilth. The farmers are becoming increasingly aware of the need for minimum tillage by minimizing the use of machines. Soil management can be achieved by using the combined active-passive tillage machines. A study was therefore, undertaken in wheat-harvested field to study the impact of conventional and modified tillage practices on paddy crop cultivation. Tillage treatments with tractor as a power source were selected during the experiment. The selected level of tillage treatments of tractor machinery management were (T1:- Direct Sowing of Rice), (T2:- 2 to 3 harrowing and no Puddling with manual transplanting), (T3:- 2 to 3 harrowing and Puddling with paddy harrow with manual transplanting), (T4:- 2 to 3 harrowing and Puddling with Rotavator with manual transplanting). The maximum output was obtained with treatment T1 (7.85 t/ha)) followed by T4 (6.4 t/ha), T3 (6.25 t/ha) and T2 (6.0 t/ha)) respectively.

Keywords: crop residues, cropping system, minimum tillage, yield

Procedia PDF Downloads 206