Search results for: protein synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4282

Search results for: protein synthesis

322 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 216
321 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 205
320 Optimizing the Doses of Chitosan/Tripolyphosphate Loaded Nanoparticles of Clodinofop Propargyl and Fenoxaprop-P-Ethyl to Manage Avena Fatua L.: An Environmentally Safer Alternative to Control Weeds

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Hussam F. Najeeb Alawadi, Athar Mahmood, Aneela Nijabat, Tasawer Abbas, Muhammad Habib, Abdullah

Abstract:

The global prevalence of Avena fatua infestation poses a significant challenge to wheat sustainability. While chemical control stands out as an efficient and rapid way to control weeds, concerns over developing resistance in weeds and environmental pollution have led to criticisms of herbicide use. Consequently, this study was designed to address these challenges through the chemical synthesis, characterization, and optimization of chitosan-based nanoparticles containing clodinofop Propargyl and fenoxaprop-P-ethyl for the effective management of A. fatua. Utilizing the ionic gelification technique, chitosan-based nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl were prepared. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses (D0 (Check weeds), D1 (Recommended dose of traditional-herbicide (TH), D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). Characterization of the chitosan-containing herbicide nanoparticles (CHT-NPs) was conducted using FT-IR analysis, demonstrating a perfect match with standard parameters. UV–visible spectrum further revealed absorption peaks at 310 nm for NPs of clodinofop propargyl and at 330 nm for NPs of fenoxaprop-p-ethyl. This research aims to contribute to sustainable weed management practices by addressing the challenges associated with chemical herbicide use. The application of chitosan-based nanoparticles (CHT-NPs) containing fenoxaprop-P-ethyl and clodinofop-propargyl at the recommended dose of the standard herbicide resulted in 100% mortality and visible injury to weeds. Surprisingly, when applied at a lower dose with 5-folds, these chitosan-containing nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl demonstrated extreme control efficacy. Furthermore, at a 10-fold lower dose compared to standard herbicides and the recommended dose of clodinofop-propargyl and fenoxaprop-P-ethyl, the chitosan-based nanoparticles exhibited comparable effects on chlorophyll content, visual injury (%), mortality (%), plant height (cm), fresh weight (g), and dry weight (g) of A. fatua. This study indicates that chitosan/tripolyphosphate-loaded nanoparticles containing clodinofop-propargyl and fenoxaprop-P-ethyl can be effectively utilized for the management of A. fatua at a 10-fold lower dose, highlighting their potential for sustainable and efficient weed control.

Keywords: mortality, chitosan-based nanoparticles, visual injury, chlorophyl contents, 5-fold lower dose.

Procedia PDF Downloads 38
319 Improving Student Learning in a Math Bridge Course through Computer Algebra Systems

Authors: Alejandro Adorjan

Abstract:

Universities are motivated to understand the factor contributing to low retention of engineering undergraduates. While precollege students for engineering increases, the number of engineering graduates continues to decrease and attrition rates for engineering undergraduates remains high. Calculus 1 (C1) is the entry point of most undergraduate Engineering Science and often a prerequisite for Computing Curricula courses. Mathematics continues to be a major hurdle for engineering students and many students who drop out from engineering cite specifically Calculus as one of the most influential factors in that decision. In this context, creating course activities that increase retention and motivate students to obtain better final results is a challenge. In order to develop several competencies in our students of Software Engineering courses, Calculus 1 at Universidad ORT Uruguay focuses on developing several competencies such as capacity of synthesis, abstraction, and problem solving (based on the ACM/AIS/IEEE). Every semester we try to reflect on our practice and try to answer the following research question: What kind of teaching approach in Calculus 1 can we design to retain students and obtain better results? Since 2010, Universidad ORT Uruguay offers a six-week summer noncompulsory bridge course of preparatory math (to bridge the math gap between high school and university). Last semester was the first time the Department of Mathematics offered the course while students were enrolled in C1. Traditional lectures in this bridge course lead to just transcribe notes from blackboard. Last semester we proposed a Hands On Lab course using Geogebra (interactive geometry and Computer Algebra System (CAS) software) as a Math Driven Development Tool. Students worked in a computer laboratory class and developed most of the tasks and topics in Geogebra. As a result of this approach, several pros and cons were found. It was an excessive amount of weekly hours of mathematics for students and, as the course was non-compulsory; the attendance decreased with time. Nevertheless, this activity succeeds in improving final test results and most students expressed the pleasure of working with this methodology. This teaching technology oriented approach strengthens student math competencies needed for Calculus 1 and improves student performance, engagement, and self-confidence. It is important as a teacher to reflect on our practice, including innovative proposals with the objective of engaging students, increasing retention and obtaining better results. The high degree of motivation and engagement of participants with this methodology exceeded our initial expectations, so we plan to experiment with more groups during the summer so as to validate preliminary results.

Keywords: calculus, engineering education, PreCalculus, Summer Program

Procedia PDF Downloads 266
318 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 101
317 Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T

Authors: Sultan Z. Mahmud, Emily C. Graff, Adil Bashir

Abstract:

Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment.

Keywords: BBB, cat brain, magnetization transfer, PEA-15

Procedia PDF Downloads 119
316 Comparison of Cardiometabolic Risk Factors in Lean Versus Overweight/Obese Peri-Urban Female Adolescent School Learners in Mthatha, South Africa: A Pilot Case Control Study

Authors: Benedicta N. Nkeh-Chungag, Constance R. Sewani-Rusike, Isaac M. Malema, Daniel T. Goon, Oladele V. Adeniyi, Idowu A. Ajayi

Abstract:

Background: Childhood and adolescent obesity is an important predictor of adult cardiometabolic diseases. Current data on age- and gender-specific cardiometabolic risk factors are lacking in the peri-urban Eastern Cape Province, South Africa. However, such information is important in designing innovative strategies to promote healthy living among children and adolescents. The purpose of this pilot study was to compare and determine the extent of cardiometabolic risk factors between samples of lean and overweight/obese adolescent population in a peri-urban township of South Africa. Methods: In this case-control study, age-matched, non-pregnant and non-lactating female adolescents consisting of equal number of cases (50 overweight/obese) and control (50 lean) participated in the study. Fasting venous blood samples were obtained for total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (Trig), highly sensitive C-reactive protein (hsCRP) and blood sugar. Anthropometric measurements included weight, height, waist and hip circumferences. Body mass index was calculated. Blood pressure was measured; and metabolic syndrome was assessed using appropriate diagnostic criteria for children and adolescents. Results: Of the 76 participants with complete data, 12/38 of the overweight/obese and 1/38 of the lean group met the criteria for adolescent metabolic syndrome. All cardiometabolic risk factors were elevated in the overweight/obese group compared with the lean group: low HDL-C (RR = 2.21), elevated TC (RR = 1.23), elevated LDL-C (RR = 1.42), elevated Trig (RR = 1.73), and elevated hsCRP (RR = 1.9). There were significant atherosclerotic indices among the overweight/obese group compared with the lean group: TC/HDL and LDL/HDL (2.99±0.91 vs 2.63±0.48; p=0.016 and 1.73±0.61 vs 1.41±0.46; p= 0.014, respectively). Conclusion: There are multiple cardiometabolic risk factors among the overweight/obese female adolescent group compared with lean adolescent group in the study. Female adolescent who are overweight and obese have higher relative risks of developing cardiometabolic diseases compared with their lean counterparts in the peri-urban Mthatha, South Africa. School health programme focusing on promoting physical exercise, healthy eating and keeping appropriate weight are needed in the country.

Keywords: adolescents, cardiometabolic risk factors, obesity, peri-urban South Africa

Procedia PDF Downloads 453
315 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 241
314 Feeding Value Improvement of Rice Straw Fermented by Spent Mushroom Substrate on Growth and Lactating Performance of Dairy Goat

Authors: G. J. Fan, T. T. Lee, M. H. Chen, T. F. Shiao, B. Yu, C. F. Lee

Abstract:

Rice straw with poor feed quality and spent mushroom substrate are both the most abundant agricultural residues in Taiwan. Edible mushrooms from white rot fungi possess lignocellulase activity. It was expected to improve the feeding value of rice straw for ruminant by solid-state fermentation pretreatment using spent mushroom substrate. Six varieties or subspecies of spent edible mushrooms (Pleurotus ostreatus (blue or white color), P. sajor-caju, P. citrinopileatus, P. eryngii and Ganoderma lucidium) substrate were evaluated in solid-state fermentation process with rice straw for 8 wks. Quality improvement of fermented rice straw was determined by its in vitro digestibility, lignocellulose degradability, and cell wall breakdown checked by scanning electron microscope. Results turned out that Pleurotus ostreatus (white color) and P. sajor-caju had the better lignocellulose degradation effect than the others and was chosen for advance in vivo study. Rice straw fermented with spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate 8 wks was prepared for growing and lactating feeding trials of dairy goat, respectively. Pangolagrass hay at 15% diet dry matter was the control diet. Fermented or original rice straw was added to substitute pangolagrass hay in both feeding trials. A total of 30 head of Alpine castrated ram were assigned into three groups for 11 weeks, 5 pens (2 head/pen) each group. A total of 21 head of Saanen and Alpine goats were assigned into three treatments and individually fed in two repeat lactating trials with 28-d each. In castrated ram study, results showed that fermented rice straw by spent Pleurotus ostreatus mushroom substrate attributed the higher daily dry matter intakes (DMI, 1.53 vs. 1.20 kg) and body weight gain (138 vs. 101 g) than goats fed original rice straw. DMI (2.25 vs. 1.81 kg) and milk yield (3.31 vs. 3.02 kg) of lactating goats fed control pangolagrass diet and fermented rice straw by spent Pleurotus sajor-caju mushroom substrate were also higher than those fed original rice straw diet (P < 0.05). Milk compositions, milk fat, protein, total solid and lactose, were similar among treatments. In conclusion, solid-state fermentation by spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate could effectively improve the feeding value of rice straw. Fermented rice straw is a good alternative fiber feed resource for growing and lactating dairy goats and 15% in diet dry matter is recommended.

Keywords: feeding value, fermented rice straw, growing and lactating dairy goat, spent Pleurotus ostreatus and Pleurotus sajor-caju mushroom substrate

Procedia PDF Downloads 153
313 Effect of Fermented Orange Juice Intake on Urinary 6‑Sulfatoxymelatonin in Healthy Volunteers

Authors: I. Cerrillo, A. Carrillo-Vico, M. A. Ortega, B. Escudero-López, N. Álvarez-Sánchez, F. Martín, M. S. Fernández-Pachón

Abstract:

Melatonin is a bioactive compound involved in multiple biological activities such as glucose tolerance, circadian rhythm regulation, antioxidant defense or immune system action. In elderly subjects the intake of foods and drinks rich in melatonin is very important due to its endogenous level decreases with age. Alcoholic fermentation is a process carried out in fruits, vegetables and legumes to obtain new products with improved bioactive compounds profile in relation to original substrates. Alcoholic fermentation process carried out by Saccharomycetaceae var. Pichia kluyveri induces an important synthesis of melatonin in orange juice. A novel beverage derived of fermented orange juice could be a promising source of this bioactive compound. The aim of the present study was to determine whether the acute intake of fermented orange juice increase the levels of urinary 6-sulfatoxymelatonin in healthy humans. Nine healthy volunteers (7 women and 2 men), aged between 20 and 25 years old and BMI of 21.1  2.4 kg/m2, were recruited. On the study day, participants ingested 500 mL of fermented orange juice. The first urine collection was made before fermented orange juice consumption (basal). The rest of urine collections were made in the following time intervals after fermented orange juice consumption: 0-2, 2-5, 5-10, 10- 15 and 15-24 hours. During the experimental period only the consumption of water was allowed. At lunch time a meal was provided (60 g of white bread, two slices of ham, a slice of cheese, 125 g of sweetened natural yoghurt and water). The subjects repeated the protocol with orange juice following a 2-wk washout period between both types of beverages. The levels of 6-sulfatoxymelatonin (6-SMT) were measured in urine recollected at different time points using the Melatonin-Sulfate Urine ELISA (IBL International GMBH, Hamburg, Germany). Levels of 6-SMT were corrected to those of creatinine for each sample. A significant (p < 0.05) increase in urinary 6-SMT levels was observed between 2-5 hours after fermented orange juice ingestion with respect to basal values (increase of 67,8 %). The consumption of orange juice did not induce any significant change in urinary 6-SMT levels. In addition, urinary 6-SMT levels obtained between 2-5 hours after fermented orange juice ingestion (115,6 ng/mg) were significantly different (p < 0.05) from those of orange juice (42,4 ng/mg). The enhancement of urinary 6-SMT after the ingestion of 500 mL of fermented orange juice in healthy humans compared to orange juice could be an important advantage of this novel product as an excellent source of melatonin. Fermented orange juice could be a new functional food, and its consumption could exert a potentially positive effect on health in both the maintenance of health status and the prevention of chronic diseases.

Keywords: fermented orange juice, functional beverage, healthy human, melatonin

Procedia PDF Downloads 381
312 Investigation of the IL23R Psoriasis/PsA Susceptibility Locus

Authors: Shraddha Rane, Richard Warren, Stephen Eyre

Abstract:

L-23 is a pro-inflammatory molecule that signals T cells to release cytokines such as IL-17A and IL-22. Psoriasis is driven by a dysregulated immune response, within which IL-23 is now thought to play a key role. Genome-wide association studies (GWAS) have identified a number of genetic risk loci that support the involvement of IL-23 signalling in psoriasis; in particular a robust susceptibility locus at a gene encoding a subunit of the IL-23 receptor (IL23R) (Stuart et al., 2015; Tsoi et al., 2012). The lead psoriasis-associated SNP rs9988642 is located approximately 500 bp downstream of IL23R but is in tight linkage disequilibrium (LD) with a missense SNP rs11209026 (R381Q) within IL23R (r2 = 0.85). The minor (G) allele of rs11209026 is present in approximately 7% of the population and is protective for psoriasis and several other autoimmune diseases including IBD, ankylosing spondylitis, RA and asthma. The psoriasis-associated missense SNP R381Q causes an arginine to glutamine substitution in a region of the IL23R protein between the transmembrane domain and the putative JAK2 binding site in the cytoplasmic portion. This substitution is expected to affect the receptor’s surface localisation or signalling ability, rather than IL23R expression. Recent studies have also identified a psoriatic arthritis (PsA)-specific signal at IL23R; thought to be independent from the psoriasis association (Bowes et al., 2015; Budu-Aggrey et al., 2016). The lead PsA-associated SNP rs12044149 is intronic to IL23R and is in LD with likely causal SNPs intersecting promoter and enhancer marks in memory CD8+ T cells (Budu-Aggrey et al., 2016). It is therefore likely that the PsA-specific SNPs affect IL23R function via a different mechanism compared with the psoriasis-specific SNPs. It could be hypothesised that the risk allele for PsA located within the IL23R promoter causes an increase IL23R expression, relative to the protective allele. An increased expression of IL23R might then lead to an exaggerated immune response. The independent genetic signals identified for psoriasis and PsA in this locus indicate that different mechanisms underlie these two conditions; although likely both affecting the function of IL23R. It is very important to further characterise these mechanisms in order to better understand how the IL-23 receptor and its downstream signalling is affected in both diseases. This will help to determine how psoriasis and PsA patients might differentially respond to therapies, particularly IL-23 biologics. To investigate this further we have developed an in vitro model using CD4 T cells which express either wild type IL23R and IL12Rβ1 or mutant IL23R (R381Q) and IL12Rβ1. Model expressing different isotypes of IL23R is also underway to investigate the effects on IL23R expression. We propose to further investigate the variants for Ps and PsA and characterise key intracellular processes related to the variants.

Keywords: IL23R, psoriasis, psoriatic arthritis, SNP

Procedia PDF Downloads 145
311 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 140
310 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 344
309 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii

Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova

Abstract:

The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).

Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia

Procedia PDF Downloads 219
308 Evaluating the Benefits of Intelligent Acoustic Technology in Classrooms: A Case Study

Authors: Megan Burfoot, Ali GhaffarianHoseini, Nicola Naismith, Amirhosein GhaffarianHoseini

Abstract:

Intelligent Acoustic Technology (IAT) is a novel architectural device used in buildings to automatically vary the acoustic conditions of space. IAT is realized by integrating two components: Variable Acoustic Technology (VAT) and an intelligent system. The VAT passively alters the RT by changing the total sound absorption in a room. In doing so, the Reverberation Time (RT) is changed and thus, the sound strength and clarity are altered. The intelligent system detects sound waves in real-time to identify the aural situation, and the RT is adjusted accordingly based on pre-programmed algorithms. IAT - the synthesis of these two components - can dramatically improve acoustic comfort, as the acoustic condition is automatically optimized for any detected aural situation. This paper presents an evaluation of the improvements of acoustic comfort in an existing tertiary classroom located at Auckland University of Technology in New Zealand. This is a pilot case study, the first of its’ kind attempting to quantify the benefits of IAT. Naturally, the potential acoustic improvements from IAT can be actualized by only installing the VAT component of IAT and by manually adjusting it rather than utilizing an intelligent system. Such a simplified methodology is adopted for this case study to understand the potential significance of IAT without adopting a time and cost-intensive strategy. For this study, the VAT is built by overlaying reflective, rotating louvers over sound absorption panels. RT's are measured according to international standards before and after installing VAT in the classroom. The louvers are manually rotated in increments by the experimenter and further RT measurements are recorded. The results are compared with recommended guidelines and reference values from national standards for spaces intended for speech and communication. The results obtained from the measurements are used to quantify the potential improvements in classroom acoustic comfort, where IAT to be used. This evaluation reveals the current existence of poor acoustic conditions in the classroom caused by high RT's. The poor acoustics are also largely attributed to the classrooms’ inability to vary acoustic parameters for changing aural situations. The classroom experiences one static acoustic state, neglecting to recognize the nature of classrooms as flexible, dynamic spaces. Evidently, when using VAT the classroom is prescribed with a wide range of RTs it can achieve. Namely, acoustic requirements for varying teaching approaches are satisfied, and acoustic comfort is improved. By quantifying the benefits of using VAT, it can confidently suggest these same benefits are achieved with IAT. Nevertheless, it is encouraged that future studies continue this line of research toward the eventual development of IAT and its’ acceptance into mainstream architecture.

Keywords: acoustic comfort, classroom acoustics, intelligent acoustics, variable acoustics

Procedia PDF Downloads 170
307 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 215
306 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.

Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity

Procedia PDF Downloads 112
305 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 212
304 Surface Defect-engineered Ceo₂−x by Ultrasound Treatment for Superior Photocatalytic H₂ Production and Water Treatment

Authors: Nabil Al-Zaqri

Abstract:

Semiconductor photocatalysts with surface defects display incredible light absorption bandwidth, and these defects function as highly active sites for oxidation processes by interacting with the surface band structure. Accordingly, engineering the photocatalyst with surface oxygen vacancies will enhance the semiconductor nanostructure's photocatalytic efficiency. Herein, a CeO2₋ₓ nanostructure is designed under the influence of low-frequency ultrasonic waves to create surface oxygen vacancies. This approach enhances the photocatalytic efficiency compared to many heterostructures while keeping the intrinsiccrystal structure intact. Ultrasonic waves induce the acoustic cavitation effect leading to the dissemination of active elements on the surface, which results in vacancy formation in conjunction with larger surface area and smaller particle size. The structural analysis of CeO₂₋ₓ revealed higher crystallinity, as well as morphological optimization, and the presence of oxygen vacancies is verified through Raman, X-rayphotoelectron spectroscopy, temperature-programmed reduction, photoluminescence, and electron spinresonance analyses. Oxygen vacancies accelerate the redox cycle between Ce₄+ and Ce₃+ by prolongingphotogenerated charge recombination. The ultrasound-treated pristine CeO₂ sample achieved excellenthydrogen production showing a quantum efficiency of 1.125% and efficient organic degradation. Ourpromising findings demonstrated that ultrasonic treatment causes the formation of surface oxygenvacancies and improves photocatalytic hydrogen evolution and pollution degradation. Conclusion: Defect engineering of the ceria nanoparticles with oxygen vacancies was achieved for the first time using low-frequency ultrasound treatment. The U-CeO₂₋ₓsample showed high crystallinity, and morphological changes were observed. Due to the acoustic cavitation effect, a larger surface area and small particle size were observed. The ultrasound treatment causes particle aggregation and surface defects leading to oxygen vacancy formation. The XPS, Raman spectroscopy, PL spectroscopy, and ESR results confirm the presence of oxygen vacancies. The ultrasound-treated sample was also examined for pollutant degradation, where 1O₂was found to be the major active species. Hence, the ultrasound treatment influences efficient photocatalysts for superior hydrogen evolution and an excellent photocatalytic degradation of contaminants. The prepared nanostructure showed excellent stability and recyclability. This work could pave the way for a unique post-synthesis strategy intended for efficient photocatalytic nanostructures.

Keywords: surface defect, CeO₂₋ₓ, photocatalytic, water treatment, H₂ production

Procedia PDF Downloads 119
303 Climate Change, Women's Labour Markets and Domestic Work in Mexico

Authors: Luis Enrique Escalante Ochoa

Abstract:

This paper attempts to assess the impacts of Climate change (CC) on inequalities in the labour market. CC will have the most serious effects on some vulnerable economic sectors, such as agriculture, livestock or tourism, but also on the most vulnerable population groups. The objective of this research is to evaluate the impact of CC on the labour market and particularly on Mexican women. Influential documents such as the synthesis reports produced by the Intergovernmental Panel on Climate Change (IPCC) in 2007 and 2014 revived a global effort to counteract the effects of CC, called for an analysis of the impacts on vulnerable socio-economic groups and on economic activities, and for the development of decision-making tools to enable policy and other decisions based on the complexity of the world in relation to climate change, taking into account socio-economic attributes. We follow up this suggestion and determine the impact of CC on vulnerable populations in the Mexican labour market, taking into account two attributes (gender and level of qualification of workers). Most studies have focused on the effects of CC on the agricultural sector, as it is considered a highly vulnerable economic sector to the effects of climate variability. This research seeks to contribute to the existing literature taking into account, in addition to the agricultural sector, other sectors such as tourism, water availability, and energy that are of vital importance to the Mexican economy. Likewise, the effects of climate change will be extended to the labour market and specifically to women who in some cases have been left out. The studies are sceptical about the impact of CC on the female labour market because of the perverse effects on women's domestic work, which are too often omitted from analyses. This work will contribute to the literature by integrating domestic work, which in the case of Mexico is much higher among women than among men (80.9% vs. 19.1%), according to the 2009 time use survey. This study is relevant since it will allow us to analyse impacts of climate change not only in the labour market of the formal economy, but also in the non-market sphere. Likewise, we consider that including the gender dimension is valid for the Mexican economy as it is a country with high degrees of gender inequality in the labour market. In the OECD economic study for Mexico (2017), the low labour participation of Mexican women is highlighted. Although participation has increased substantially in recent years (from 36% in 1990 to 47% in 2017), it remains low compared to the OECD average where women participate around 70% of the labour market. According to Mexico's 2009 time use survey, domestic work represents about 13% of the total time available. Understanding the interdependence between the market and non-market spheres, and the gender division of labour within them is the necessary premise for any economic analysis aimed at promoting gender equality and inclusive growth.

Keywords: climate change, labour market, domestic work, rural sector

Procedia PDF Downloads 111
302 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 112
301 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 133
300 Cell Adhesion, Morphology and Cytokine Expression of Synoviocytes Can Be Altered on Different Nano-Topographic Oxidized Silicon Nanosponges

Authors: Hung-Chih Hsu, Pey-Jium Chang, Ching-Hsein Chen, Jer-Liang Andrew Yeh

Abstract:

Osteoarthritis (OA) is a common disorder in rehabilitation clinic. The main characteristics include joint pain, localized tenderness and enlargement, joint effusion, cartilage destruction, loss of adhesion of perichondrium, synovium hyperplasia. Synoviocytes inflammation might be a cause of local tenderness and effusion. Inflammation cytokines might also play an important role in joint pain, cartilage destruction, decrease adhesion of perichondrium to the bone. Treatments of osteoarthritis include non-steroid anti-inflammation drugs (NSAID), glucosamine supplementation, hyaluronic acid, arthroscopic debridement, and total joint replacement. Total joint replacement is commonly used in patients with severe OA who failed respond to pharmacological treatment. However, some patients received surgery had serious adverse events, including instability of the implants due to insufficient adhesion to the adjacent bony tissue or synovial inflammation. We tried to develop ideal nano-topographic oxidized silicon nanosponges by using with various chemicals to produce thickness difference in nanometers in order to study more about the cell-environment interactions in vitro like the alterations of cell adhesion, morphology, extracellular matrix secretions in the pathogenesis of osteoarthritis. Cytokines studies like growth factor, reactive oxygen species, reactive inflammatory materials (Like nitrous oxide and prostaglandin E2), extracellular matrix (ECM) degradation enzymes, and synthesis of collagen will also be observed and discussed. Extracellular and intracellular expression transforming growth factor beta (TGF-β) will be studied by reverse transcription-polymerase chain reaction (RT-PCR). The degradation of ECM will be observed by the bioactivity ratio of matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase by ELISA (Enzyme-linked immunosorbent assay). When rabbit synoviocytes were cultured on these nano-topographic structures, they demonstrate better cell adhesion rate, decreased expression of MMP-2,9 and PGE2, and increased expression of TGF-β when cultured in nano-topographic oxidized silicon nanosponges than in the planar oxidized silicon ones. These results show cell behavior, cytokine production can be influenced by physical characteristics from different nano-topographic structures. Our study demonstrates the possibility of manipulating cell behavior in these nano-topographic biomaterials.

Keywords: osteoarthritis, synoviocyte, oxidized silicon surfaces, reactive oxygen species

Procedia PDF Downloads 365
299 Effective Service Provision and Multi-Agency Working in Service Providers for Children and Young People with Special Educational Needs and Disabilities: A Mixed Methods Systematic Review

Authors: Natalie Tyldesley-Marshall, Janette Parr, Anna Brown, Yen-Fu Chen, Amy Grove

Abstract:

It is widely recognised in policy and research that the provision of services for children and young people (CYP) with Special Educational Needs and Disabilities (SEND) is enhanced when health and social care, and education services collaborate and interact effectively. In the UK, there have been significant changes to policy and provisions which support and improve collaboration. However, professionals responsible for implementing these changes face multiple challenges, including a lack of specific implementation guidance or framework to illustrate how effective multi-agency working could or should work. This systematic review will identify the key components of effective multi-agency working in services for CYP with SEND; and the most effective forms of partnership working in this setting. The review highlights interventions that lead to service improvements; and the conditions in the local area that support and encourage success. A protocol was written and registered with PROSPERO registration: CRD42022352194. Searches were conducted on several health, care, education, and applied social science databases from the year 2012 onwards. Citation chaining has been undertaken, as well as broader grey literature searching to enrich the findings. Qualitative, quantitative, mixed methods studies and systematic reviews were included, assessed independently, and critically appraised or assessed for risk of bias using appropriate tools based on study design. Data were extracted in NVivo software and checked by a more experienced researcher. A convergent segregated approach to synthesis and integration was used in which the quantitative and qualitative data were synthesised independently and then integrated using a joint display integration matrix. Findings demonstrate the key ingredients for effective partnership working for services delivering SEND. Interventions deemed effective are described, and lessons learned across interventions are summarised. Results will be of interest to educators and health and social care professionals that provide services to those with SEND. These will also be used to develop policy recommendations for how UK healthcare, social care, and education services for CYP with SEND aged 0-25 can most effectively collaborate and achieve service improvement. The review will also identify any gaps in the literature to recommend areas for future research. Funding for this review was provided by the Department for Education.

Keywords: collaboration, joint commissioning, service delivery, service improvement

Procedia PDF Downloads 80
298 The Effectiveness of Psychosocial Interventions for Survivors of Natural Disasters: A Systematic Review

Authors: Santhani M. Selveindran

Abstract:

Background: Natural disasters are traumatic global events that are becoming increasing more common, with significant psychosocial impact on survivors. This impact results not only in psychosocial distress but, for many, can lead to psychosocial disorders and chronic psychopathology. While there are currently available interventions that seek to prevent and treat these psychosocial sequelae, their effectiveness is uncertain. The evidence-base is emerging with more primary studies evaluating the effectiveness of various psychosocial interventions for survivors of natural disasters, which remains to be synthesized. Aim of Review: To identify, critically appraise and synthesize the current evidence-base on the effectiveness of psychosocial interventions in preventing or treating Post-Traumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD) and/or Generalized Anxiety Disorder (GAD) in adults and children who are survivors of natural disasters. Methods: A protocol was developed as a guide to carry out this review. A systematic search was conducted in eight international electronic databases, three grey literature databases, one dissertation and thesis repository, websites of six humanitarian and non-governmental organizations renowned for their work on natural disasters, as well as bibliographic and citation searching for eligible articles. Papers meeting the specific inclusion criteria underwent quality assessment using the Downs and Black checklist. Data were extracted from the included papers and analysed by way of narrative synthesis. Results: Database and website searching returned 3777 papers where 31 met the criteria for inclusion. Additional 2 papers were obtained through bibliographic and citation searching. Methodological quality of most papers was fair. Twenty-five studies evaluated psychological interventions, five, social interventions whereas three studies evaluated ‘mixed’ psychological and social interventions. All studies, irrespective of methodological quality, reported post-intervention reductions in symptom scores for PTSD, depression and/or anxiety and where assessed, reduced diagnosis of PTSD and MDD, and produced improvements in self-efficacy and quality of life. Statistically significant results were seen in 27 studies. However, three studies demonstrated that the evaluated interventions may not have been very beneficial. Conclusions: The overall positive results suggest that any psychosocial interventions are favourable and should be delivered to all natural disaster survivors, irrespective of age, country, and phase of disaster. Yet, heterogeneity and methodological shortcomings of the current evidence-base makes it difficult to draw definite conclusions needed to formulate categorical guidance or frameworks. Further, rigorously conducted research is needed in this area, although the feasibility of such, given the context and nature of the problem, is also recognized.

Keywords: psychosocial interventions, natural disasters, survivors, effectiveness

Procedia PDF Downloads 132
297 A Novel Chicken W Chromosome Specific Tandem Repeat

Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya

Abstract:

The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.

Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats

Procedia PDF Downloads 369
296 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies

Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari

Abstract:

Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.

Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy

Procedia PDF Downloads 151
295 The Influence of Nutritional and Immunological Status on the Prognosis of Head and Neck Cancer

Authors: Ching-Yi Yiu, Hui-Chen Hsu

Abstract:

Objectives: Head and neck cancer (HNC) is a big global health problem in the world. Despite the development of diagnosis and treatment, the overall survival of HNC is still low. The well recognition of the interaction of the host immune system and cancer cells has led to realizing the processes of tumor initiation, progression and metastasis. Many systemic inflammatory responses have been shown to play a crucial role in cancer progression. The pre and post-treatment nutritional and immunological status of HNC patients is a reliable prognostic indicator of tumor outcomes and survivors. Methods: Between July 2020 to June 2022, We have enrolled 60 HNC patients, including 59 males and 1 female, in Chi Mei Medical Center, Liouying, Taiwan. The age distribution was from 37 to 81 years old (y/o), with a mean age of 57.6 y/o. We evaluated the pre-and post-treatment nutritional and immunological status of these HNC patients with body weight, body weight loss, body mass index (BMI), whole blood count including hemoglobin (Hb), lymphocyte, neutrophil and platelet counts, biochemistry including prealbumin, albumin, c-reactive protein (CRP), with the time period of before treatment, post-treatment 3 and 6 months. We calculated the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) to assess how these biomarkers influence the outcomes of HNC patients. Results: We have carcinoma of the hypopharynx in 21 cases with 35%, carcinoma of the larynx in 9 cases, carcinoma of the tonsil and tongue every 6 cases, carcinoma soft palate and tongue base every 5 cases, carcinoma of buccal mucosa, retromolar trigone and mouth floor every 2 cases, carcinoma of the hard palate and low lip each 1 case. There were stage I 15 cases, stage II 13 cases, stage III 6 cases, stage IVA 10 cases, and stage IVB 16 cases. All patients have received surgery, chemoradiation therapy or combined therapy. We have wound infection in 6 cases, 2 cases of pharyngocutaneous fistula, flap necrosis in 2 cases, and mortality in 6 cases. In the wound infection group, the average BMI is 20.4 kg/m2; the average Hb is 12.9 g/dL, the average albumin is 3.5 g/dL, the average NLR is 6.78, and the average PLR is 243.5. In the PC fistula and flap necrosis group, the average BMI is 21.65 kg/m2; the average Hb is 11.7 g/dL, the average albumin is 3.15 g/dL, average NLR is 13.28, average PLR is 418.84. In the mortality group, the average BMI is 22.3 kg/m2; the average Hb is 13.58 g/dL, the average albumin is 3.77 g/dL, the average NLR is 6.06, and the average PLR is 275.5. Conclusion: HNC is a big challenging public health problem worldwide, especially in the high prevalence of betel nut consumption area Taiwan. Besides the definite risk factors of smoking, drinking and betel nut related, the other biomarkers may play significant prognosticators in the HNC outcomes. We concluded that the average BMI is less than 22 kg/m2, the average Hb is low than 12.0 g/dL, the average albumin is low than 3.3 g/dL, the average NLR is low than 3, and the average PLR is more than 170, the surgical complications and mortality will be increased, and the prognosis is poor in HNC patients.

Keywords: nutritional, immunological, neutrophil-to-lymphocyte ratio, paltelet-to-lymphocyte ratio.

Procedia PDF Downloads 52
294 Redesigning Clinical and Nursing Informatics Capstones

Authors: Sue S. Feldman

Abstract:

As clinical and nursing informatics mature, an area that has gotten a lot of attention is the value capstone projects. Capstones are meant to address authentic and complex domain-specific problems. While capstone projects have not always been essential in graduate clinical and nursing informatics education, employers are wanting to see evidence of the prospective employee's knowledge and skills as an indication of employability. Capstones can be organized in many ways: a single course over a single semester, multiple courses over multiple semesters, as a targeted demonstration of skills, as a synthesis of prior knowledge and skills, mentored by one single person or mentored by various people, submitted as an assignment or presented in front of a panel. Because of the potential for capstones to enhance the educational experience, and as a mechanism for application of knowledge and demonstration of skills, a rigorous capstone can accelerate a graduate's potential in the workforce. In 2016, the capstone at the University of Alabama at Birmingham (UAB) could feel the external forces of a maturing Clinical and Nursing Informatics discipline. While the program had a capstone course for many years, it was lacking the depth of knowledge and demonstration of skills being asked for by those hiring in a maturing Informatics field. Since the program is online, all capstones were always in the online environment. While this modality did not change, other contributors to instruction modality changed. Pre-2016, the instruction modality was self-guided. Students checked in with a single instructor, and that instructor monitored progress across all capstones toward a PowerPoint and written paper deliverable. At the time, the enrollment was few, and the maturity had not yet pushed hard enough. By 2017, doubling enrollment and the increased demand of a more rigorously trained workforce led to restructuring the capstone so that graduates would have and retain the skills learned in the capstone process. There were three major changes: the capstone was broken up into a 3-course sequence (meaning it lasted about 10 months instead of 14 weeks), there were many chunks of deliverables, and each faculty had a cadre of about 5 students to advise through the capstone process. Literature suggests that the chunking, breaking up complex projects (i.e., the capstone in one summer) into smaller, more manageable chunks (i.e., chunks of the capstone across 3 semesters), can increase and sustain learning while allowing for increased rigor. By doing this, the teaching responsibility was shared across faculty with each semester course being taught by a different faculty member. This change facilitated delving much deeper in instruction and produced a significantly more rigorous final deliverable. Having students advised across the faculty seemed like the right thing to do. It not only shared the load, but also shared the success of students. Furthermore, it meant that students could be placed with an academic advisor who had expertise in their capstone area, further increasing the rigor of the entire capstone process and project and increasing student knowledge and skills.

Keywords: capstones, clinical informatics, health informatics, informatics

Procedia PDF Downloads 111
293 Leuprolide Induced Scleroderma Renal Crisis: A Case Report

Authors: Nirali Sanghavi, Julia Ash, Amy Wasserman

Abstract:

Introduction: To the best of our knowledge, there is only one case report that found an association between leuprolide and scleroderma renal crisis (SRC). Leuprolide has been noted to cause acute renal failure in some patients. Given the close timing of the leuprolide injection and the worsening renal function in our patient, leuprolide likely caused exacerbation of lupus nephritis and SRC. Interestingly, our patient on long-term hydroxychloroquine (HCQ) with normal baseline cardiac function was found to have HCQ cardiomyopathy highlighting the need for close monitoring of HCQ toxicity. We know that some of the risk factors that are involved in HCQ induced cardiomyopathy are older age, females, increased dose and >10 years of HCQ use, and pre-existing cardiac and renal insufficiency. Case presentation: A 34-year-old African American woman with a history of overlap of systemic lupus erythematosus (SLE) and scleroderma features and class III lupus nephritis presented with severe headaches, elevated blood pressure (180/120 mmHg) and worsening creatinine levels (2.07 mg/dL). The headaches started 1 month ago after she started leuprolide injections for fibroids. She was being treated with mycophenolate mofetil 1 gm twice a day, belimumab weekly, HCQ 200mg, and prednisone 5 mg daily. She has been on HCQ since her teenage years. The examination was unremarkable except for proximal interphalangeal joint contractures in the right hand and sclerodactyly of bilateral hands, unchanged from baseline. Laboratory findings include urinalysis, which showed 3+ protein, 1+ blood, 6 red blood cells, and 14 white blood cells ruling out thrombotic microangiopathy. C3 was 32 mg/dL, C4 <5 mg/dL, and +dsDNA increased >1000. She was started on captopril and discharged once creatinine and blood pressure was controlled. She was readmitted with hypertension, hyperkalemia, worsening creatinine, nephrotic range proteinuria, complaints of chest pressure, and shortness of breath with pleuritic chest pain. Physical examination and lab findings were unchanged. She was treated with pulse dose methyl prednisone followed by taper and multiple anti-hypertensive agents, including captopril, for presumed lupus nephritis flare versus SRC. Renal biopsy was consistent with SRC and class IV lupus nephritis and was started on cyclophosphamide. While cardiac biopsy showed borderline myocarditis without necrosis and cytoplasmic vacuolization consistent with HCQ cardiomyopathy, hence HCQ was discontinued. Summary: It highlights a rare association of leuprolide causing exacerbation of lupus nephritis or SRC. Although rare, the current case reinforces the importance of close monitoring for HCQ toxicity in patients with renal insufficiency.

Keywords: leuprolide, lupus nephritis, scleroderma, SLE

Procedia PDF Downloads 68