Search results for: automatic incident detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4484

Search results for: automatic incident detection

584 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic

Authors: Chittana Phompila

Abstract:

The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.

Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery

Procedia PDF Downloads 158
583 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 193
582 Empirical Analysis of the Global Impact of Cybercrime Laws on Cyber Attacks and Malware Types

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study focused on probing the effectiveness of online consumer privacy and protection laws, electronic transaction laws, privacy and data protection laws, and cybercrime legislation amid frequent cyber-attacks and malware types worldwide. An empirical analysis was engaged to uncover ties and causations between the stringency and implementation of these legal structures and the prevalence of cyber threats. A deliberate sample of seventy-eight countries (thirteen countries each from six continents) was chosen as sample size to study the challenges linked with trending regulations and possible panoramas for improving cybersecurity through refined legal approaches. Findings establish if the frequency of cyber-attacks and malware types vary significantly. Also, the result proved that various cybercrime laws differ statistically, and electronic transactions law does not statistically impact the frequency of cyber-attacks. The result also statistically revealed that the online Consumer Privacy and Protection law does not influence the total number of cyber-attacks. In addition, the results implied that Privacy and Data Protection laws do not statistically impact the total number of cyber-attacks worldwide. The calculated value also proved that cybercrime law does not statistically impact the total number of cyber-attacks. Finally, the computed value concludes that combined multiple cyber laws do not significantly impact the total number of cyber-attacks worldwide. Suggestions were produced based on findings from the study, contributing to the ongoing debate on the validity of legal approaches in battling cybercrime and shielding consumers in the digital age.

Keywords: cybercrime legislation, cyber attacks, consumer privacy and protection law, detection, electronic transaction law, prevention, privacy and data protection law, prohibition, prosecution

Procedia PDF Downloads 41
581 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
580 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 21
579 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 39
578 Tuberculosis Massive Active Case Discovery in East Jakarta 2016-2017: The Role of Ketuk Pintu Layani Dengan Hati and Juru Pemantau Batuk (Jumantuk) Cadre Programs

Authors: Ngabilas Salama

Abstract:

Background: Indonesia has the 2nd highest number of incidents of tuberculosis (TB). It accounts for 1.020.000 new cases per year, only 30% of which has been reported. To find the lost 70%, a massive active case discovery was conducted through two programs: Ketuk Pintu Layani Dengan Hati (KPLDH) and Kader Juru Pemantau Batuk (Jumantuk cadres), who also plays a role in child TB screening. Methods: Data was collected and analyzed through Tuberculosis Integrated Online System from 2014 to 2017 involving 129 DOTS facility with 86 primary health centers in East Jakarta. Results: East Jakarta consists of 2.900.722 people. KPLDH program started in February 2016 consisting of 84 teams (310 people). Jumantuk cadres was formed 4 months later (218 orang). The number of new TB cases in East Jakarta (primary health center) from 2014 to June 2017 respectively is as follows: 6.499 (2.637), 7.438 (2.651), 8.948 (3.211), 5.701 (1.830). Meanwhile, the percentage of child TB case discovery in primary health center was 8,5%, 9,8%, 12,1% from 2014 to 2016 respectively. In 2017, child TB case discovery was 13,1% for the first 3 months and 16,5% for the next 3 months. Discussion: Increased TB incidence rate from 2014 to 2017 was 14,4%, 20,3%, and 27,4% respectively in East Jakarta, and 0,5%, 21,1%, and 14% in primary health center. This reveals the positive role of KPLDH and Jumantuk in TB detection and reporting. Likewise, these programs were responsible for the increase in child TB case discovery, especially in the first 3 months of 2017 (Ketuk Pintu TB Day program) and the next 3 months (active TB screening). Conclusion: KPLDH dan Jumantuk are actively involved in increasing TB case discovery in both adults and children.

Keywords: tuberculosis, case discovery program, primary health center, cadre

Procedia PDF Downloads 331
577 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector

Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng

Abstract:

Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.

Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry

Procedia PDF Downloads 348
576 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 391
575 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 129
574 Electrochemical Biosensor for the Detection of Botrytis spp. in Temperate Legume Crops

Authors: Marzia Bilkiss, Muhammad J. A. Shiddiky, Mostafa K. Masud, Prabhakaran Sambasivam, Ido Bar, Jeremy Brownlie, Rebecca Ford

Abstract:

A greater achievement in the Integrated Disease Management (IDM) to prevent the loss would result from early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control. This could significantly reduce costs to the growers and reduce any flow on impacts to the environment from excessive chemical spraying. Necrotrophic fungal disease botrytis grey mould, caused by Botrytis cinerea and Botrytis fabae, significantly reduce temperate legume yield and grain quality during favourable environmental condition in Australia and worldwide. Several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity, and consequent usefulness within the paddock. To substantially improve speed, accuracy, and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. For this, two sets of primers were designed for both Botrytis cinerea and Botrytis fabae which have shown the species specificity with initial sensitivity of two genomic copies/µl in pure fungal backgrounds using multiplexed quantitative PCR. During further validation, quantitative PCR detected 100 spores on artificially infected legume leaves. Simultaneously an electro-catalytic assay was developed for both target fungal DNA using functionalised magnetic nanoparticles. This was extremely sensitive, able to detect a single spore within a raw total plant nucleic acid extract background. We believe that the translation of this technology to the field will enable quantitative assessment of pathogen load for future accurate decision support of informed botrytis grey mould management.

Keywords: biosensor, botrytis grey mould, sensitive, species specific

Procedia PDF Downloads 173
573 Enzyme Producing Psyhrophilic Pseudomonas app. Isolated from Poultry Meats

Authors: Ali Aydin, Mert Sudagidan, Aysen Coban, Alparslan Kadir Devrim

Abstract:

Pseudomonas spp. (specifically, P. fluorescens and P. fragi) are considered the principal spoilage microorganisms of refrigerated poultry meats. The higher the level psychrophilic spoilage Pseudomonas spp. on carcasses at the end of processing lead to decrease the shelf life of the refrigerated product. The aim of the study was the identification of psychrophilic Pseudomonas spp. having proteolytic and lipolytic activities from poultry meats by 16S rRNA and rpoB gene sequencing, investigation of protease and lipase related genes and determination of proteolytic activity of Pseudomonas spp. In the of isolation procedure, collected chicken meat samples from local markets and slaughterhouses were homogenized and the lysates were incubated on Standard method agar and Skim Milk agar for selection of proteolytic bacteria and tributyrin agar for selection of lipolytic bacteria at +4 °C for 7 days. After detection of proteolytic and lipolytic colonies, the isolates were firstly analyzed by biochemical tests such as Gram staining, catalase and oxidase tests. DNA gene sequencing analysis and comparison with GenBank revealed that 126 strong enzyme Pseudomonas spp. were identified as predominantly P. fluorescens (n=55), P. fragi (n=42), Pseudomonas spp. (n=24), P. cedrina (n=2), P. poae (n=1), P. koreensis (n=1), and P. gessardi (n=1). Additionally, protease related aprX gene was screened in the strains and it was detected in 69/126 strains, whereas, lipase related lipA gene was found in 9 Pseudomonas strains. Protease activity was determined using commercially available protease assay kit and 5 strains showed high protease activity. The results showed that psychrophilic Pseudomonas strains were present in chicken meat samples and they can produce important levels of proteases and lipases for food spoilage to decrease food quality and safety.

Keywords: Pseudomonas, chicken meat, protease, lipase

Procedia PDF Downloads 387
572 A Comparative Study of Black Carbon Emission Characteristics from Marine Diesel Engines Using Light Absorption Method

Authors: Dongguk Im, Gunfeel Moon, Younwoo Nam, Kangwoo Chun

Abstract:

Recognition of the needs about protecting environment throughout worldwide is widespread. In the shipping industry, International Maritime Organization (IMO) has been regulating pollutants emitted from ships by MARPOL 73/78. Recently, the Marine Environment Protection Committee (MEPC) of IMO, at its 68th session, approved the definition of Black Carbon (BC) specified by the following physical properties (light absorption, refractory, insolubility and morphology). The committee also agreed to the need for a protocol for any voluntary measurement studies to identify the most appropriate measurement methods. Filter Smoke Number (FSN) based on light absorption is categorized as one of the IMO relevant BC measurement methods. EUROMOT provided a FSN measurement data (measured by smoke meter) of 31 different engines (low, medium and high speed marine engines) of member companies at the 3rd International Council on Clean Transportation (ICCT) workshop on marine BC. From the comparison of FSN, the results indicated that BC emission from low speed marine diesel engines was ranged from 0.009 to 0.179 FSN and it from medium and high speed marine diesel engine was ranged 0.012 to 3.2 FSN. In consideration of measured the low FSN from low speed engine, an experimental study was conducted using both a low speed marine diesel engine (2 stroke, power of 7,400 kW at 129 rpm) and a high speed marine diesel engine (4 stroke, power of 403 kW at 1,800 rpm) under E3 test cycle. The results revealed that FSN was ranged from 0.01 to 0.16 and 1.09 to 1.35 for low and high speed engines, respectively. The measurement equipment (smoke meter) ranges from 0 to 10 FSN. Considering measurement range of it, FSN values from low speed engines are near the detection limit (0.002 FSN or ~0.02 mg/m3). From these results, it seems to be modulated the measurement range of the measurement equipment (smoke meter) for enhancing measurement accuracy of marine BC and evaluation on performance of BC abatement technologies.

Keywords: black carbon, filter smoke number, international maritime organization, marine diesel engine (two and four stroke), particulate matter

Procedia PDF Downloads 276
571 Land Use Land Cover Changes in Response to Urban Sprawl within North-West Anatolia, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

In the present study, an attempt was made to state the Land Use Land Cover (LULC) transformation over three decades around the urban regions of Balıkesir, Bursa, and Çanakkale provincial centers (PCs) in Turkey. Landsat imageries acquired in 1984, 1999 and 2014 were used to determine the LULC change. Images were classified using the supervised classification technique and five main LULC classes were considered including forest (F), agricultural land (A), residential area (urban) - bare soil (R-B), water surface (W), and other (O). Change detection analyses were conducted for 1984-1999 and 1999-2014, and the results were evaluated. Conversions of LULC types to R-B class were investigated. In addition, population changes (1985-2014) were assessed depending on census data, the relations between population and the urban areas were stated, and future populations and urban area needs were forecasted for 2030. The results of LULC analysis indicated that urban areas, which are covered under R-B class, were expanded in all PCs. During 1984-1999 R-B class within Balıkesir, Bursa and Çanakkale PCs were found to have increased by 7.1%, 8.4%, and 2.9%, respectively. The trend continued in the 1999-2014 term and the increment percentages reached to 15.7%, 15.5%, and 10.2% at the end of 30-year period (1984-2014). Furthermore, since A class in all provinces was found to be the principal contributor for the R-B class, urban sprawl lead to the loss of agricultural lands. Moreover, the areas of R-B classes were highly correlated with population within all PCs (R2>0.992). Depending on this situation, both future populations and R-B class areas were forecasted. The estimated values of increase in the R-B class areas for Balıkesir, Bursa, and Çanakkale PCs were 1,586 ha, 7,999 ha and 854 ha, respectively. Due to this fact, the forecasted values for 2,030 are 7,838 ha, 27,866, and 2,486 ha for Balıkesir, Bursa, and Çanakkale, and thus, 7.7%, 8.2%, and 9.7% more R-B class areas are expected to locate in PCs in respect to the same order.

Keywords: landsat, LULC change, population, urban sprawl

Procedia PDF Downloads 262
570 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 208
569 Prevalence and Comparison for Detection Methods of Candida Species in Vaginal Specimens from Pregnant and Non-Pregnant Saudi Women

Authors: Yazeed Al-Sheikh

Abstract:

Pregnancy represents a risk factor in the occurrence of vulvovaginal candidiasis. To investigate the prevalence rate of vaginal carriage of Candida species in Saudi pregnant and non-pregnant women, high vaginal swab (HVS) specimens (707) were examined by direct microscopy (10% KOH and Giemsa staining) and parallel cultured on Sabouraud Dextrose Agar (SDA) as well as on “CHROM agar Candida” medium. As expected, Candida-positive cultures were frequently observed in pregnant-test group (24%) than in non-pregnant group (17%). The frequency of culture positive was correlated to pregnancy (P=0.047), parity (P=0.001), use of contraceptive (P=0.146), or antibiotics (P=0.128), and diabetic-patients (P < 0.0001). Out of 707 HVS examined specimens, 157 specimens were yeast-positive culture (22%) on Sabouraud Dextrose Agar or “CHROM agar Candida”. In comparison, the sensitivities of the direct 10% KOH and the Giemsa stain microscopic examination methods were 84% (132/157) and 95% (149/157) respectively but both with 100% specificity. As for the identity of recovered 157 yeast isolates, based on API 20C biotype carbohydrate assimilation, germ tube and chlamydospore formation, C. albicansand C. glabrata constitute 80.3 and 12.7% respectively. Rates of C. tropicalis, C. kefyr, C. famata or C. utilis were 2.6, 1.3, and 0.6% respectively. Sachromyces cerevisiae and Rhodotorula mucilaginosa yeasts were also encountered at a frequency of 1.3 and 0.6% respectively. Finally, among all recovered 157 yeast-isolates, strains resistant to ketoconazole were not detected, whereas 5% of the C. albicans and as high as 55% of the non-albicans yeast isolates (majority C. glabrata) showed resistance to fluconazole. Our findings may prove helpful for continuous determination of the existing vaginal candidiasis causative species during pregnancy, its lab-diagnosis and/or control and possible measures to minimize the incidence of the disease-associated pre-term delivery.

Keywords: vaginal candidiasis, Candida spp., pregnancy, risk factors, API 20C-yeast biotypes, giemsa stain, antifungal agents

Procedia PDF Downloads 241
568 MRI Findings in Children with Intrac Table Epilepsy Compared to Children with Medical Responsive Epilepsy

Authors: Susan Amirsalari, Azime Khosrinejad, Elham Rahimian

Abstract:

Objective: Epilepsy is a common brain disorder characterized by a persistent tendency to develop in neurological, cognitive, and psychological contents. Magnetic Resonance Imaging (MRI) is a neuroimaging test facilitating the detection of structural epileptogenic lesions. This study aimed to compare the MRI findings between patients with intractable and drug-responsive epilepsy. Material & methods: This case-control study was conducted from 2007 to 2019. The research population encompassed all 1-16- year-old patients with intractable epilepsy referred to the Shafa Neuroscience Center (n=72) (a case group) and drug-responsive patients referred to the pediatric neurology clinic of Baqiyatallah Hospital (a control group). Results: There were 72 (23.5%) patients in the intractable epilepsy group and 200 (76.5%) patients in the drug-responsive group. The participants' mean age was 6.70 ±4.13 years, and there were 126 males and 106 females in this study Normal brain MRI was noticed in 21 (29.16%) patients in the case group and 184 (92.46%) patients in the control group. Neuronal migration disorder (NMD)was also exhibited in 7 (9.72%) patients in the case group and no patient in the control group. There were hippocampal abnormalities and focal lesions (mass, dysplasia, etc.) in 10 (13.88%) patients in the case group and only 1 (0.05%) patient in the control group. Gliosis and porencephalic cysts were presented in 3 (4.16%) patients in the case group and no patient in the control group. Cerebral and cerebellar atrophy was revealed in 8 (11.11%) patients in the case group and 4 (2.01%) patients in the control group. Corpus callosum agenesis, hydrocephalus, brain malacia, and developmental cyst were more frequent in the case group; however, the difference between the groups was not significant. Conclusion: The MRI findings such as hippocampal abnormalities, focal lesions (mass, dysplasia), NMD, porencephalic cysts, gliosis, and atrophy are significantly more frequent in children with intractable epilepsy than in those with drug-responsive epilepsy.

Keywords: magnetic resonance imaging, intractable epilepsy, drug responsive epilepsy, neuronal migrational disorder

Procedia PDF Downloads 45
567 The Magnitude and Associated Factors of Coagulation Abnormalities Among Liver Disease Patients at the University of Gondar Comprehensive Specialized Hospital Northwest, Ethiopia

Authors: Melkamu A., Woldu B., Sitotaw C., Seyoum M., Aynalem M.

Abstract:

Background: Liver disease is any condition that affects the liver cells and their function. It is directly linked to coagulation disorders since most coagulation factors are produced by the liver. Therefore, this study aimed to assess the magnitude and associated factors of coagulation abnormalities among liver disease patients. Methods: A cross-sectional study was conducted from August to October 2022 among 307 consecutively selected study participants at the University of Gondar Comprehensive Specialized Hospital. Sociodemographic and clinical data were collected using a structured questionnaire and data extraction sheet, respectively. About 2.7 mL of venous blood was collected and analyzed by the Genrui CA51 coagulation analyzer. Data was entered into Epi-data and exported to STATA version 14 software for analysis. The finding was described in terms of frequencies and proportions. Factors associated with coagulation abnormalities were analyzed by bivariable and multivariable logistic regression. Result: In this study, a total of 307 study participants were included. Of them, the magnitude of prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) were 68.08% and 63.51%, respectively. The presence of anemia (AOR = 2.97, 95% CI: 1.26, 7.03), a lack of a vegetable feeding habit (AOR = 2.98, 95% CI: 1.42, 6.24), no history of blood transfusion (AOR = 3.72, 95% CI: 1.78, 7.78), and lack of physical exercise (AOR = 3.23, 95% CI: 1.60, 6.52) were significantly associated with prolonged PT. While the presence of anaemia (AOR = 3.02; 95% CI: 1.34, 6.76), lack of vegetable feeding habit (AOR = 2.64; 95% CI: 1.34, 5.20), no history of blood transfusion (AOR = 2.28; 95% CI: 1.09, 4.79), and a lack of physical exercise (AOR = 2.35; 95% CI: 1.16, 4.78) were significantly associated with abnormal APTT. Conclusion: Patients with liver disease had substantial coagulation problems. Being anemic, having a transfusion history, lack of physical activity, and lack of vegetables showed significant association with coagulopathy. Therefore, early detection and management of coagulation abnormalities in liver disease patients are critical.

Keywords: coagulation, liver disease, PT, Aptt

Procedia PDF Downloads 60
566 Combined Treatment with Microneedling and Chemical Peels Improves Periorbital Wrinkles and Skin Laxity

Authors: G. Kontochristopoulos, T. Spiliopoulos, V. Markantoni, E. Platsidaki, A. Kouris, E. Balamoti, C. Bokotas, G. Haidemenos

Abstract:

Introduction: There is a high patient demand for periorbital rejuvenation since the facial area is often the first to show visible signs of aging. With advancing age, there are sometimes marked changes that occur in the skin, fat, muscle and bone of the periorbital region, resulting to wrinkles and skin laxity. These changes are among the easiest areas to correct using several minimally invasive techniques, which have become increasingly popular over the last decade. Lasers, radiofrequency, botulinum toxin, fat grafting and fillers are available treatments sometimes in combination to traditional blepharoplasty. This study attempts to show the benefits of a minimally invasive approach to periorbital wrinkles and skin laxity that combine microneedling and 10% trichloroacetic acid (TCA) peels. Method: Eleven female patients aged 34-72 enrolled in the study. They all gave informed consent after receiving detailed information regarding the treatment procedure. Exclusion criteria in the study were previous treatment for the same condition in the past six months, pregnancy, allergy or hypersensitivity to the components, infection, inflammation and photosensitivity on the affected region. All patients had diffuse periorbital wrinkles and mild to moderate upper or lower eyelid skin laxity. They were treated with Automatic Microneedle Therapy System-Handhold and topical application of 10% trichloroacetic acid solution to each periorbital area for five minutes. Needling at a 0,25 mm depth was performed in both latelar (x-y) directions. Subsequently, the peeling agent was applied to each periorbital area for five minutes. Patients were subjected to the above combination every two weeks for a series of four treatments. Subsequently they were followed up regularly every month for two months. The effect was photo-documented. A Physician's and a Patient's Global Assessment Scale was used to evaluate the efficacy of the treatment (0-25% indicated poor response, 25%-50% fair, 50%-75% good and 75%-100% excellent response). Safety was assessed by monitoring early and delayed adverse events. Results: At the end of the study, almost all patients demonstrated significant aesthetic improvement. Physicians assessed a fair and a good improvement in 9(81.8% of patients) and 2(18.1% of patients) participants respectively. Patients Global Assessment rated a fair and a good response in 6 (54.5%) and 5 (45.4%) participants respectively. The procedure was well tolerated and all patients were satisfied. Mild discomfort and transient erythema were quite common during or immediately after the procedure, however only temporary. During the monthly follow up, no complications or scars were observed. Conclusions: Microneedling is known as a simple, office–based collagen induction therapy. Low concentration TCA solution applied to the epidermis that has been more permeable by microneedling, can reach the dermis more effectively. In the present study, chemical peels with 10% TCA acted as an adjuvant to microneedling, as it causes controlled skin damage, promoting regeneration and rejuvenation of tissues. This combined therapy improved periorbital fine lines, wrinkles, and overall appearance of the skin. Thus it constitutes an alternative treatment of periorbital skin aging, with encouraging results and minor side-effects.

Keywords: chemical peels, microneedling, periorbital wrinkles, skin laxity

Procedia PDF Downloads 354
565 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.

Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis

Procedia PDF Downloads 73
564 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 138
563 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 157
562 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The RMSE between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition

Procedia PDF Downloads 104
561 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
560 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 85
559 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter

Authors: Harish Aryal

Abstract:

The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.

Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters

Procedia PDF Downloads 77
558 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 376
557 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 488
556 Improving Search Engine Performance by Removing Indexes to Malicious URLs

Authors: Durga Toshniwal, Lokesh Agrawal

Abstract:

As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.

Keywords: web crawler, malwares, seeds, drive-by-downloads, security

Procedia PDF Downloads 229
555 Monitoring Deforestation Using Remote Sensing And GIS

Authors: Tejaswi Agarwal, Amritansh Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from Indian institute of remote Sensing (IIRS), Dehradoon in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud free and did not belong to dry and leafless season. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean, we have analysed the change in ground biomass. Through this paper, we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques, it is clearly shown that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI, change detection

Procedia PDF Downloads 1203