Search results for: soil water characteristic curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12216

Search results for: soil water characteristic curve

11856 Field Tests and Numerical Simulation of Tunis Soft Soil Improvement Using Prefabricated Vertical Drains

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

This paper presents a case study of “Radès la Goulette” bridge project using the technique of prefabricated vertical drains (PVD) associated with step by step construction of preloading embankments with averaged height of about 6 m. These embankments are founded on a highly compressible layer of Tunis soft soil. The construction steps included extensive soil instrumentation such as piezometers and settlement plates for monitoring the dissipation of excess pore water pressures and settlement during the consolidation of Tunis soft soil. An axisymmetric numerical model using the 2D finite difference code FLAC was developed and calibrated using laboratory tests to predict the soil behavior and consolidation settlements. The constitutive model impact for simulating the soft soil behavior is investigated. The results of analyses show that numerical analysis provided satisfactory predictions for the field performance during the construction of Radès la Goulette embankment. The obtained results show the effectiveness of PVD in the acceleration of the consolidation time. A comparison of numerical results with theoretical analysis was presented.

Keywords: tunis soft soil, radès bridge project, prefabricated vertical drains, FLAC, acceleration of consolidation

Procedia PDF Downloads 104
11855 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients

Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami

Abstract:

Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.

Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve

Procedia PDF Downloads 384
11854 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element

Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai

Abstract:

In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.

Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement

Procedia PDF Downloads 367
11853 Research on Planning Strategy of Characteristic Town from the Perspective of Ecological Concept: A Case Study on Hangzhou Dream Town in Zhejiang

Authors: Xiaohan Ye

Abstract:

Under the new normal situation, some urban spaces with the industrial base and regional features in Zhejiang, China have been selected to build a characteristic town, a kind of environmentally-friendly development platform with city-industry integrated, in an attempt to achieve the most optimized layout of productivity with the least space resource. After analysis on the connotation, mechanism and mode of characteristic town in Zhejiang, it is suggested in this paper that characteristic town should take improving the regional ecological environment as an important object in planning strategy from the perspective of ecological concept. Improved environmental quality, optimized resource allocation, and compact industrial distribution should be realized so as to drive the regional green and sustainable development. Finally, this paper analyzes location selection, industrial distribution, spatial organization and environment construction based on the exploration of the dream town of Zhejiang province, the first batch of provincial-level characteristic towns to demonstrate how to apply the ecological concept to the design of characteristic town.

Keywords: characteristic town, ecological concept, Hangzhou dream town, planning strategy

Procedia PDF Downloads 292
11852 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments

Authors: L. Mouzai, M. Bouhadef

Abstract:

Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).

Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity

Procedia PDF Downloads 136
11851 Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria

Authors: O. I. Ojo, W. B. R. Graham, I. W. Pishiria

Abstract:

The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L.

Keywords: ground water quality, irrigation, characteristics, soil drainage, salinity, Fadama

Procedia PDF Downloads 259
11850 Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008

Authors: Aminu Mansur

Abstract:

A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008.

Keywords: soil temperature, warming trend, environment science, climate and atmospheric sciences

Procedia PDF Downloads 278
11849 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 409
11848 Microbiological Analysis of Soil from Onu-Ebonyi Contaminated with Inorganic Fertilizer

Authors: M. N. Alo, U. C. C. Egbule, J. O. Orji, C. J. Aneke

Abstract:

Microbiological analysis of soil from Onu-Ebonyi Izzi local government area of Ebonyi State, Nigeria contaminated with inorganic fertilizer was carried out with a view to determine the effect of the fertilizer on the microbial flora of the soil. soil samples were analyzed for microbial burden. the result showed that the following organisms were isolated with their frequency of their occurrence as follows:pseudomonas species (33.3%) and aspergillus species (54.4%) had the highest frequncy of occurence in the whole sample of batches, while streptococcus species had 6.0% and Geotrichum species (5.3%) had the least and other predominant microorganism isolated: bacillus species,staphylococcus species and vibrio species, Escherichia species, rhzizopus species, mucor species and fusaruim species. From the result, it could be concluded that the soil was contaminated and this could affect adversely the fertility of the soil .

Keywords: soil, bacteria, fungi, inorganic fertilizer, Onu- Ebonyi

Procedia PDF Downloads 484
11847 The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa

Authors: P. M. Kundu, L. R. Singo, J. O. Odiyo

Abstract:

Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment.

Keywords: catchment, digital elevation model, hydrological model, routing, runoff

Procedia PDF Downloads 542
11846 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs

Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza

Abstract:

Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.

Keywords: basal crop coefficient, irrigation, remote sensing, SETMI

Procedia PDF Downloads 121
11845 Mite Soil as Biological Indicators the Quality of the Soil in the Forested Area of the Coast of Algeria

Authors: Soumeya Fekkoun, Djelloul Ghezali, Doumandji Salaheddine

Abstract:

The majority of the mite soil contributes to decompose the organic matter in the soil, the richness or poverty is a way of knowing the quality of the soil, in this regard we studied the ecological side of the soil mite in a forest park «coast of Algeria». 6 by taking soil samples every month for the year 2010/2011 .The samples are collected and extracted using the technique of Berlese Tullgren. It was obtained 604 individuals. These riches can indicate the fertility of soil and knead the high proportion of organic material in it. The largest number observed in the spring, followed by the separation of the 252 individuals fall 222 individuals and then the summer with 106 individuals and winter 80 individuals. Among the 18 families obtained. Scheloribatidae is the most dominant with 30.6% followed by Ceratozetidae with 16%, then Euphthiracaridae 14%. The families remain involved with low percentages. the diversity index Schanonweaver varied between 2.3 bits in the summer and 3.83 bits in the spring. As the results of the analysis statistic confirm the existence of a clear difference between the four seasons and the richness of soil mite and diversity.

Keywords: soil mite, forest, coast of Algeria, diversity

Procedia PDF Downloads 387
11844 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity

Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield

Procedia PDF Downloads 121
11843 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 285
11842 Corresponding Effect of Mycorhizal fungi and Pistachio on Absorption of Nutrition and Resistance on Salinity in Pistacia vera, L.

Authors: Hamid Mohammadi, S. H. Eftekhar Afzali

Abstract:

The irregular usage of chemical fertilizer cause different types of water and soil pollution and problems in health of human in past decades and organic fertilizer has been considered more and more. Mycorrhizal fungi have symbiosis with plant families and significantly effect on plant growth. Proper management of these symbiosis causes to reduce the usage of chemical fertilizers and absorb nutrition especially phosphor. Pistacia vera is endemic in Iran and is one of the most important products for this country. Considering special circumstances of pistachio orchards according to increasing salinity of water and soil and mismanagement of fertilizer reveals the necessity of the usage of Mycorrhizal fungi in these orchards.

Keywords: pistachio, mycorhiza, nutrition, salinity

Procedia PDF Downloads 470
11841 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 105
11840 Effects of Soil Erosion on Vegetation Development

Authors: Josephine Wanja Nyatia

Abstract:

The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems

Keywords: soil erosion, vegetation, development, seed availability

Procedia PDF Downloads 51
11839 Soil Properties and Yam Performance as Influenced by Poultry Manure and Tillage on an Alfisol in Southwestern Nigeria

Authors: E. O. Adeleye

Abstract:

Field experiments were conducted to investigate the effect of soil tillage techniques and poultry manure application on the soil properties and yam (Dioscorea rotundata) performance in Ondo, southwestern Nigeria for two farming seasons. Five soil tillage techniques, namely ploughing (P), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and zero-tillage (ZT) each combined with and without poultry manure at the rate of 10 tha-1 were investigated. Data were obtained on soil properties, nutrient uptake, growth and yield of yam. Soil moisture content, bulk density, total porosity and post harvest soil chemical characteristics were significantly (p>0.05) influenced by soil tillage-manure treatments. Addition of poultry manure to the tillage techniques in the study increased soil total porosity, soil moisture content and reduced soil bulk density. Poultry manure improved soil organic matter, total nitrogen, available phosphorous, exchangeable Ca, k, leaf nutrients content of yam, yam growth and tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that the possible deleterious effect of tillage on soil properties, growth and yield of yam on an alfisol in southwestern Nigeria can be reduced by combining tillage with poultry manure.

Keywords: poultry manure, tillage, soil chemical properties, yield

Procedia PDF Downloads 422
11838 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 37
11837 Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)

Authors: Mohammad Mehdi Pardsouie, Mehdi Mokhberi, Seyed Mohammad Ali Zomorodian, Seyed Alireza Nasehi

Abstract:

One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants.

Keywords: partial penetration, surcharge preloading, excess pore water pressure, Bangkok test embankments

Procedia PDF Downloads 169
11836 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways

Authors: Vinayak Malaghan, Digvijay Pawar

Abstract:

Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.

Keywords: operating speed, design consistency, continuous speed profile data, day and night time

Procedia PDF Downloads 135
11835 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 219
11834 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves

Authors: E. Arcos, E. Bautista, F. Méndez

Abstract:

In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.

Keywords: approximation U-P, porous seabed, scaling analysis, water waves

Procedia PDF Downloads 325
11833 Investigating the Impacts of Climate Change on Soil Erosion: A Case Study of Kasilian Watershed, Northern Iran

Authors: Mohammad Zare, Mahbubeh Sheikh

Abstract:

Many of the impact of climate change will material through change in soil erosion which were rarely addressed in Iran. This paper presents an investigation of the impacts of climate change soil erosin for the Kasilian basin. LARS-WG5 was used to downscale the IPCM4 and GFCM21 predictions of the A2 scenarios for the projected periods of 1985-2030 and 2080-2099. This analysis was carried out by means of the dataset the International Centre for Theoretical Physics (ICTP) of Trieste. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE). Results indicate that soil erosion increase or decrease, depending on which climate scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods.

Keywords: Kasilian watershed, climatic change, soil erosion, LARS-WG5 Model, RUSLE

Procedia PDF Downloads 480
11832 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)

Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche

Abstract:

Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.

Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography

Procedia PDF Downloads 41
11831 Soil Degradation Resulting from Migration of Ion Leachate in Gosa Dumpsite, Abuja

Authors: S. Ebisintei, M. A. Olutoye, A. S. Kovo, U. G. Akpan

Abstract:

The effect of soil degradation due to ion leachate migration using dumpsite located at Idu industrial area of Abuja was investigated. It was done to assess the health and environmental pollution consequences caused by heavy metals’ concentration in the soil on inhabitants around the settlement. Soil samples collected from four cardinal points and at the center during the dry and wet season were pretreated, digested and heavy metal concentrations present were analyzed using Atomic Absorption Spectrophotometer. The concentrations of Pb, Cu, Mn, Ni, and Cr, were determined and also for control sample obtained 300 m away from the dumpsite. Water samples were collected from three wells to test for physiochemical properties of pH, COD, BOD, DO, hardness, conductivity, and alkalinity. The result showed a significant difference in concentration of toxic heavy metals in the dumpsite as compared to the control sample. A mathematical model was developed to predict the heavy metal concentrations beyond the sampling point. The results indicate that metal concentrations in both dry and wet season were above the WHO, and SON set standards. The trend, if unrestrained, portends danger to human life, reduces agricultural productivity and sustainability.

Keywords: soil degradation, ion leachate, productivity, environment, sustainability

Procedia PDF Downloads 327
11830 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 265
11829 Design of Soil Replacement under Axial Centric Load Isolated Footing by Limit State Method

Authors: Emad A. M. Osman, Ahmed M. Abu-Bakr

Abstract:

Compacted granular fill under shallow foundation is one of the oldest, cheapest, and easiest techniques to improve the soil characteristics to increase the bearing capacity and decrease settlement under footing. There are three main factors affecting the design of soil replacement to gain these advantages. These factors are the type of replaced soil, characteristics, and thickness. The first two factors can be easily determined by laboratory and field control. This paper emphasizes on how to determine the thickness accurately for footing under centric axial load by limit state design method. The advantages of the method are the way of determining the thickness (independent of experience) and it takes into account the replaced and original or underneath soil characteristics and reaches the goals of replaced soils economically.

Keywords: design of soil replacement, LSD method, soil replacement, soil improvement

Procedia PDF Downloads 327
11828 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment

Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová

Abstract:

Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.

Keywords: nitrogen, compost, biomass production, lysimeter

Procedia PDF Downloads 326
11827 The Research of Water Levels in the Zhinvali Water Reservoir and Results of Field Research on the Debris Flow Tributaries of the River Tetri Aragvi Flowing in It

Authors: Givi Gavardashvili, Eduard Kukhalashvili, Tamriko Supatashvili, Giorgi Natroshvili, Konstantine Bziava, Irma Qufarashvili

Abstract:

In the article to research water levels in the Zhinvali water reservoirs by field and theoretical research and using GPS and GIS technologies has been established dynamic of water reservoirs changes in the suitable coordinates and has been made water reservoir maps and is lined in the 3D format. By using of GPS coordinates and digital maps has been established water horizons of Zhinvali water reservoir in the absolute marks and has been calculated water levels volume. To forecast the filling of the Zhinvali water reservoir by solid sediment in 2018 conducted field experimental researches in the catchment basin of river Tetri (White) Aragvi. It has been established main hydrological and hydraulic parameters of the active erosion-debris flow tributaries of river Tetri Aragvi. It has been calculated erosion coefficient considering the degradation of the slope. By calculation is determined, that in the river Tetri Aragvi catchment basin the value of 1% maximum discharge changes Q1% = 70,0 – 550,0 m3/sec, and erosion coefficient - E = 0,73 - 1,62, with suitable fifth class of erosion and intensity 50-100 tone/hectare in the year.

Keywords: Zhinvali soil dam, water reservoirs, water levels, erosion, debris flow

Procedia PDF Downloads 166