Search results for: high efficiency particulate air
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23952

Search results for: high efficiency particulate air

23592 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine

Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.

Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence

Procedia PDF Downloads 263
23591 Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature

Authors: Sung-Uk Wee, Chang-Sung Seok, Jae-Mean Koo, Jeong-Min Lee

Abstract:

Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature.

Keywords: gas turbine blade, tensile test, fatigue life, stress-strain

Procedia PDF Downloads 456
23590 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 155
23589 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 323
23588 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 387
23587 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 205
23586 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 283
23585 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.

Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode

Procedia PDF Downloads 41
23584 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 255
23583 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 138
23582 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine

Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.

Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence

Procedia PDF Downloads 189
23581 Data Envelopment Analysis of Allocative Efficiency among Small-Scale Tuber Crop Farmers in North-Central, Nigeria

Authors: Akindele Ojo, Olanike Ojo, Agatha Oseghale

Abstract:

The empirical study examined the allocative efficiency of small holder tuber crop farmers in North central, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 300 randomly selected tuber crop farmers from the study area. Descriptive statistics, data envelopment analysis and Tobit regression model were used to analyze the data. The DEA result on the classification of the farmers into efficient and inefficient farmers showed that 17.67% of the sampled tuber crop farmers in the study area were operating at frontier and optimum level of production with mean allocative efficiency of 1.00. This shows that 82.33% of the farmers in the study area can still improve on their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Tobit model for factors influencing allocative inefficiency in the study area showed that as the year of farming experience, level of education, cooperative society membership, extension contacts, credit access and farm size increased in the study area, the allocative inefficiency of the farmers decreased. The results on effects of the significant determinants of allocative inefficiency at various distribution levels revealed that allocative efficiency increased from 22% to 34% as the farmer acquired more farming experience. The allocative efficiency index of farmers that belonged to cooperative society was 0.23 while their counterparts without cooperative society had index value of 0.21. The result also showed that allocative efficiency increased from 0.43 as farmer acquired high formal education and decreased to 0.16 with farmers with non-formal education. The efficiency level in the allocation of resources increased with more contact with extension services as the allocative efficeincy index increased from 0.16 to 0.31 with frequency of extension contact increasing from zero contact to maximum of twenty contacts per annum. These results confirm that increase in year of farming experience, level of education, cooperative society membership, extension contacts, credit access and farm size leads to increases efficiency. The results further show that the age of the farmers had 32% input to the efficiency but reduces to an average of 15%, as the farmer grows old. It is therefore recommended that enhanced research, extension delivery and farm advisory services should be put in place for farmers who did not attain optimum frontier level to learn how to attain the remaining 74.39% level of allocative efficiency through a better production practices from the robustly efficient farms. This will go a long way to increase the efficiency level of the farmers in the study area.

Keywords: allocative efficiency, DEA, Tobit regression, tuber crop

Procedia PDF Downloads 266
23580 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income

Procedia PDF Downloads 187
23579 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 509
23578 Impact of Applying Bag House Filter Technology in Cement Industry on Ambient Air Quality - Case Study: Alexandria Cement Company

Authors: Haggag H. Mohamed, Ghatass F. Zekry, Shalaby A. Elsayed

Abstract:

Most sources of air pollution in Egypt are of anthropogenic origin. Alexandria Governorate is located at north of Egypt. The main contributing sectors of air pollution in Alexandria are industry, transportation and area source due to human activities. Alexandria includes more than 40% of the industrial activities in Egypt. Cement manufacture contributes a significant amount to the particulate pollution load. Alexandria Portland Cement Company (APCC) surrounding was selected to be the study area. APCC main kiln stack Total Suspended Particulate (TSP) continuous monitoring data was collected for assessment of dust emission control technology. Electro Static Precipitator (ESP) was fixed on the cement kiln since 2002. The collected data of TSP for first quarter of 2012 was compared to that one in first quarter of 2013 after installation of new bag house filter. In the present study, based on these monitoring data and metrological data a detailed air dispersion modeling investigation was carried out using the Industrial Source Complex Short Term model (ISC3-ST) to find out the impact of applying new bag house filter control technology on the neighborhood ambient air quality. The model results show a drastic reduction of the ambient TSP hourly average concentration from 44.94μg/m3 to 5.78μg/m3 which assures the huge positive impact on the ambient air quality by applying bag house filter technology on APCC cement kiln

Keywords: air pollution modeling, ambient air quality, baghouse filter, cement industry

Procedia PDF Downloads 240
23577 Air Pollution: The Journey from Single Particle Characterization to in vitro Fate

Authors: S. Potgieter-Vermaak, N. Bain, A. Brown, K. Shaw

Abstract:

It is well-known from public news media that air pollution is a health hazard and is responsible for early deaths. The quantification of the relationship between air quality and health is a probing question not easily answered. It is known that airborne particulate matter (APM) <2.5µm deposits in the tracheal and alveoli zones and our research probes the possibility of quantifying pulmonary injury by linking reactive oxygen species (ROS) in these particles to DNA damage. Currently, APM mass concentration is linked to early deaths and limited studies probe the influence of other properties on human health. To predict the full extent and type of impact, particles need to be characterised for chemical composition and structure. APMs are routinely analysed for their bulk composition, but of late analysis on a micro level probing single particle character, using micro-analytical techniques, are considered. The latter, single particle analysis (SPA), permits one to obtain detailed information on chemical character from nano- to micron-sized particles. This paper aims to provide a snapshot of studies using data obtained from chemical characterisation and its link with in-vitro studies to inform on personal health risks. For this purpose, two studies will be compared, namely, the bioaccessibility of the inhalable fraction of urban road dust versus total suspended solids (TSP) collected in the same urban environment. The significant influence of metals such as Cu and Fe in TSP on DNA damage is illustrated. The speciation of Hg (determined by SPA) in different urban environments proved to dictate its bioaccessibility in artificial lung fluids rather than its concentration.

Keywords: air pollution, human health, in-vitro studies, particulate matter

Procedia PDF Downloads 206
23576 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 468
23575 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.

Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy

Procedia PDF Downloads 178
23574 Investigation of Main Operating Parameters Affecting Gas Turbine Efficiency and Gas Releases

Authors: Farhat Hajer, Khir Tahar, Ammar Ben Brahim

Abstract:

This work presents a study on the influence of the main operating variables on the gas turbine cycle. A numerical simulation of a gas turbine cycle is performed for a real net power of 100 MW. A calculation code is developed using EES software. The operating variables are taken in conformity with the local environmental conditions adopted by the Tunisian Society of Electricity and Gas. Results show that the increase of ambient temperature leads to an increase of Tpz and NOx emissions rate and a decrease of cycle efficiency and UHC emissions. The CO emissions decrease with the raise of residence time, while NOx emissions rate increases and UHC emissions rate decreases. Furthermore, both of cycle efficiency and NOx emissions increase with the increase of the pressure ratio.

Keywords: Carbon monoxide, Efficiency, Emissions, Gas Turbine, Nox, UHC

Procedia PDF Downloads 410
23573 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles

Authors: Kang Hyun Yi

Abstract:

This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.

Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output

Procedia PDF Downloads 1027
23572 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation

Procedia PDF Downloads 158
23571 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes

Authors: J. J. Vargas, N. Prieto, L. A. Toro

Abstract:

Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.

Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method

Procedia PDF Downloads 358
23570 A System Dynamics Model for Assessment of Alternative Energy Policy Measures: A Case of Energy Management System as an Energy Efficiency Policy Tool

Authors: Andra Blumberga, Uldis Bariss, Anna Kubule, Dagnija Blumberga

Abstract:

European Union Energy Efficiency Directive provides a set of binding energy efficiency measures to reach. Each of the member states can use either energy efficiency obligation scheme or alternative policy measures or combination of both. Latvian government has decided to divide savings among obligation scheme (65%) and alternative measures (35%). This decision might lead to significant energy tariff increase hence impact on the national economy. To assess impact of alternative policy measures focusing on energy management scheme based on ISO 50001 and ability to decrease share of obligation scheme a System Dynamics modeling was used. Simulation results show that energy efficiency goal can be met with alternative policy measure to large energy consumers in industrial, tertiary and public sectors by applying the energy tax exemption for implementers of energy management system. A delay in applying alternative policy measures plays very important role in reaching the energy efficiency goal. One year delay in implementation of this policy measure reduces cumulative energy savings from 2016 to 2017 from 5200 GWh to 3000 GWh in 2020.

Keywords: system dynamics, energy efficiency, policy measure, energy management system, obligation scheme

Procedia PDF Downloads 255
23569 Study of Clutch Cable Architecture and Its Influence in Efficiency of Mechanical Cable Release System

Authors: M. Devamanalan, K. Pothiraj, M. Sudhan

Abstract:

In competitive market like India, there is a high demand on the equal contribution on performance and its durability aspect of any system. In General vehicle has multiple sub-systems such as powertrain, BIW, Brakes, Actuations, Suspension and Seats etc., To withstand the market challenges, the contribution of each sub-system is very vital. The malfunction of any one sub system will directly have an impact on the performance of the major system which lead to dis-satisfaction to the end user. The Powertrain system consists of several sub-systems in which clutch is one of the prime sub-systems in MT vehicles which assist for smoother gear shifts with proper clutch dis-engagement and engagement. In general, most of the vehicles will have a mechanical or semi or full hydraulic clutch release system, whereas in small Commercial Vehicles (SCV) the majorly used clutch release system is mechanical cable release system due to its lesser cost and functional requirements. The major bottle neck in the cable type clutch release system is increase in pedal effort due to hysteresis increase and Gear shifting hard due to efficiency loss / cable slackness over the mileage accumulation of the vehicle. This study is to mainly focus on how the efficiency and hysteresis change over the mileage of the vehicle occurs because of the design architecture of outer and inner cable. The study involves several cable design validation results from vehicle level and rig level through the defined cable routing and test procedures. Results are compared to evaluate the suitable cable design architecture based on better efficiency and lower hysteresis parameters at initial and end of the validation.

Keywords: clutch, clutch cable, efficiency, architecture, cable routing

Procedia PDF Downloads 93
23568 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones

Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar

Abstract:

Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.

Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison

Procedia PDF Downloads 370
23567 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 98
23566 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities

Authors: Veljko Jeremic, Milica Kostic Stankovic, Aleksandar Markovic, Milan Martic

Abstract:

Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States, the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.

Keywords: evaluating efficiency, distance based analysis, ranking of universities, ARWU

Procedia PDF Downloads 274
23565 Positive Effects of Natural Gas Usage on Air Pollution

Authors: Ismail Becenen

Abstract:

Air pollution, a consequence of urbanization brought about by modern life, is as global as it is local and regional. Because of the adverse effects of air pollution on human health, air quality is given importance all over the world. According to the decision of the World Health Organization, clean air is the basic necessity for human health and well-being. It poses a very high risk especially for heart diseases and stroke cases. In this study, the positive effects of natural gas usage on air pollution in cities are explained by using literature scans and air pollution measurement values. Natural gas is cleaner than other types of fuel. It contains less sulfur and organic sulfur compounds. When natural gas burns, it does not leave ashes, it does not cause problems in the rubbish mountains. It's a clean fuel, it easily burns and shines. It is a burning gas that is easy and efficient. In addition, there is not a toxic effect for people in case of inhalation. As a result, the use of natural gas needs to be widespread to reduce air pollution around the world in order to provide a healthier life for people and the environment.

Keywords: natural gas, air pollution, sulfur dioxide, particulate matter, energy

Procedia PDF Downloads 172
23564 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages

Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai

Abstract:

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.

Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer

Procedia PDF Downloads 112
23563 Chemical Demulsification for Treating Crude Oil Emulsion

Authors: Miran Sabah Ibrahim, Nahit Aktas

Abstract:

The utilization of emulsifiers is highly important in the process of breaking emulsions. This examination employed five commercial demulsifiers in various temperatures for evaluating the separation efficiency. Furthermore, two different crude oils (Khurmala and Demir Dagh crude oil) were utilized for preparing emulsion. The outcomes revealed that the application commercial demulsifiers for Khurmala crude oil at 55°C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) the separation efficiency were (78, 80.6, 78, 86 and 90 %) respectively. However, at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) separation efficiency were (87, 85, 91.3, 94 and 97 %) respectively. Nonetheless, utilizing Demir Dagh crude oil at 55 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) resulted in the separation efficiency of (63.3, 66.6, 65, 73 and 76.6 %) respectively, and at 65 °C and 100 ppm (KD-3100, KD-3200, FD-6144, FD-6210 and RI35Q) were (77, 76.6, 80, 82 and 85 %) respectively. The combinations of FD-6144 and RI35Q at 55°C and ratio of (1:1) and (1:3) for Khurmala crude oil led to (96 and 90.6 %) efficiency respectively. However, the efficiency decreased to (98.6 and 93.3 %) respectively at 65 °C. The same combinations applied on Demir Dagh Crude oil and the results were (78 and 63.3 %) at 55 °C and (86.6 and 71 %) at 65 °C. Three different brine concentrations (NaCl) (0.5, 2 and 3.5 %) were prepared and utilized. It was found that the optimum NaCl concentration was at 3.5 % NaCl concentration for both khurmala and Demir dagh crude oil at 55 °C and 65 °C.

Keywords: demulsifier, emulsion, breaking emulsion, emulsifying agent (surfactant)

Procedia PDF Downloads 310